The catalytic hydrogenation of CO2 is a relevant strategy for mitigating CO2 emissions and its applicability relies on our ability to prepare catalysts that are highly active under mild conditions. Understanding and improving these tailored catalysts requires innovative materials synthesis routes and advanced methods of characterization. In this study, mono-dispersed 2 nm RuO2 nanoparticles were prepared as a stable colloidal suspension and deposited onto different titania supports by impregnation. Supported RuO2 nanoparticles are homogeneously dispersed at the surface of the titania supports. Then, upon annealing and reduction, metallic Ru nanoparticles are obtained, which are active in the hydrogenation of CO2 to CH4. However, depending on the crystal structure of the different TiO2 supports (anatase, rutile, and a mixture of both), the catalysts exhibited drastically diverse catalytic performances. An array of characterization tools (N2-physisorption, H2-chemisorption, HR-TEM, STEM-HAADF, 3D tomographic analysis, XRD, and XPS) was used to unravel the origin of this support effect. It appeared that catalytic behaviour was related to profound morphological changes occurring during the annealing step. In particular, advanced electron microscopy techniques allow visualisation of the consequences of RuO2 nanoparticle mobility onto titania. It is shown that RuO2 sinters heavily on anatase TiO2, but spreads and forms epitaxial layers onto rutile TiO2. On anatase, large Ru chunks are finally obtained. On rutile, the formation of a particular “rutile-TiO2/RuO2/rutile-TiO2 sandwich structure” is demonstrated. These phenomena – along with the relative thermal instability of the supports – explain why the catalysts based on the commercial P25 titania support outperform those based on pure crystalline titania. The study opens new perspectives for the design of highly active CO2 methanation catalysts.
Cuenya Beatriz Roldan, Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects, 10.1016/j.tsf.2010.01.018
Campelo Juan M., Luna Diego, Luque Rafael, Marinas José M., Romero Antonio A., Sustainable Preparation of Supported Metal Nanoparticles and Their Applications in Catalysis, 10.1002/cssc.200800227
Campbell Charles T., The Energetics of Supported Metal Nanoparticles: Relationships to Sintering Rates and Catalytic Activity, 10.1021/ar3003514
Prieto Gonzalo, Zečević Jovana, Friedrich Heiner, de Jong Krijn P., de Jongh Petra E., Towards stable catalysts by controlling collective properties of supported metal nanoparticles, 10.1038/nmat3471
Kondratenko Evgenii V., Amrute Amol P., Pohl Marga-Martina, Steinfeldt Norbert, Mondelli Cecilia, Pérez-Ramírez Javier, Superior activity of rutile-supported ruthenium nanoparticles for HCl oxidation, 10.1039/c3cy00372h
Tada Shohei, Kikuchi Ryuji, Takagaki Atsushi, Sugawara Takashi, Oyama S.Ted, Urasaki Kohei, Satokawa Shigeo, Study of RuNi/TiO2 catalysts for selective CO methanation, 10.1016/j.apcatb.2013.04.024
Martins J., Batail N., Silva S., Rafik-Clement S., Karelovic A., Debecker D.P., Chaumonnot A., Uzio D., CO2 hydrogenation with shape-controlled Pd nanoparticles embedded in mesoporous silica: Elucidating stability and selectivity issues, 10.1016/j.catcom.2014.08.027
Mahata N., Raghavan K. V., Vishwanathan V., Park C., Keane M. A., Phenol hydrogenation over palladium supported on magnesia: Relationship between catalyst structure and performance, 10.1039/b100237f
Lin Qingquan, Liu Xiao Yan, Jiang Ying, Wang Yong, Huang Yanqiang, Zhang Tao, Crystal phase effects on the structure and performance of ruthenium nanoparticles for CO2 hydrogenation, 10.1039/c4cy00030g
Xiang Guolei, Shi Xuejun, Wu Yulong, Zhuang Jing, Wang Xun, Size effects in Atomic-Level Epitaxial Redistribution Process of RuO2 over TiO2, 10.1038/srep00801
Chen M.S., Goodman D.W., Structure–activity relationships in supported Au catalysts, 10.1016/j.cattod.2005.10.007
Van Santen Rutger A., Complementary Structure Sensitive and Insensitive Catalytic Relationships, 10.1021/ar800022m
Campbell Charles T., Catalyst–support interactions: Electronic perturbations, 10.1038/nchem.1412
Zhang Yang, Ren Tong, Silica supported ruthenium oxide nanoparticulates as efficient catalysts for water oxidation, 10.1039/c2cc35272a
Aziz M. A. A., Jalil A. A., Triwahyono S., Ahmad A., CO2 methanation over heterogeneous catalysts: recent progress and future prospects, 10.1039/c5gc00119f
Thampi K. Ravindranathan, Kiwi John, Grätzel Michael, Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure, 10.1038/327506a0
Lunde Peter J., Kester Frank L., Carbon Dioxide Methanation on a Ruthenium Catalyst, 10.1021/i260049a005
Karelovic Alejandro, Ruiz Patricio, Mechanistic study of low temperature CO2 methanation over Rh/TiO2 catalysts, 10.1016/j.jcat.2013.02.009
Chen Xiaobo, Mao Samuel S., Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications, 10.1021/cr0500535
Henderson M. A., Worley S. D., An infrared study of the hydrogenation of carbon dioxide on supported rhodium catalysts, 10.1021/j100254a023
Urasaki Kohei, Endo Ken-ichiro, Takahiro Tomoki, Kikuchi Ryuji, Kojima Toshinori, Satokawa Shigeo, Effect of Support Materials on the Selective Methanation of CO over Ru Catalysts, 10.1007/s11244-010-9509-5
Crihan Daniela, Knapp Marcus, Zweidinger Stefan, Lundgren Edvin, Weststrate Cornelis J., Andersen Jesper N., Seitsonen Ari P., Over Herbert, Stable Deacon Process for HCl Oxidation over RuO2, 10.1002/anie.200705124
Over Herbert, Surface Chemistry of Ruthenium Dioxide in Heterogeneous Catalysis and Electrocatalysis: From Fundamental to Applied Research, 10.1021/cr200247n
Lin Qingquan, Huang Yanqiang, Wang Yong, Li Lin, Liu Xiao Yan, Lv Fei, Wang Aiqin, Li Wen-Cui, Zhang Tao, RuO2/rutile-TiO2: a superior catalyst for N2O decomposition, 10.1039/c3ta15454h
Seki Kohei, Development of RuO2/Rutile-TiO2 Catalyst for Industrial HCl Oxidation Process, 10.1007/s10563-010-9091-7
Debecker Damien P., Farin Benjamin, Gaigneaux Eric M., Sanchez Clément, Sassoye Capucine, Total oxidation of propane with a nano-RuO2/TiO2 catalyst, 10.1016/j.apcata.2014.04.043
Abe Takayuki, Tanizawa Masaaki, Watanabe Kuniaki, Taguchi Akira, CO2 methanation property of Ru nanoparticle-loaded TiO2 prepared by a polygonal barrel-sputtering method, 10.1039/b817740f
Balaraju M., Rekha V., Devi B.L.A. Prabhavathi, Prasad R.B.N., Prasad P.S. Sai, Lingaiah N., Surface and structural properties of titania-supported Ru catalysts for hydrogenolysis of glycerol, 10.1016/j.apcata.2010.06.013
Sassoye Capucine, Muller Guillaume, Debecker Damien P., Karelovic Alejandro, Cassaignon Sophie, Pizarro Christian, Ruiz Patricio, Sanchez Clément, A sustainable aqueous route to highly stable suspensions of monodispersed nano ruthenia, 10.1039/c1gc15769h
Pillai Suresh C., Periyat Pradeepan, George Reenamole, McCormack Declan E., Seery Michael K., Hayden Hugh, Colreavy John, Corr David, Hinder Steven J., Synthesis of High-Temperature Stable Anatase TiO2Photocatalyst, 10.1021/jp065933h
Wetchakun Natda, Incessungvorn Burapat, Wetchakun Khatcharin, Phanichphant Sukon, Influence of calcination temperature on anatase to rutile phase transformation in TiO2 nanoparticles synthesized by the modified sol–gel method, 10.1016/j.matlet.2012.05.092
Ji L., Lin J., Zeng H. C., Thermal Processes of Volatile RuO2in Nanocrystalline Al2O3Matrixes Involving γ→α Phase Transformation, 10.1021/cm001420q
Bell Wayne E., Tagami M., HIGH-TEMPERATURE CHEMISTRY OF THE RUTHENIUM—OXYGEN SYSTEM1, 10.1021/j100805a042
Sch�fer Harald, Tebben Alfred, Gerhardt Wilfried, Zur Chemie der Platinmetalle. V Gleichgewichte mit Ru(f)5 RuO2(f)5 RuO3(g) und RuO4(g), 10.1002/zaac.19633210105
Paquez Xavier, Amiard Guillaume, de Combarieu Guillaume, Boissière Cédric, Grosso David, Resistant RuO2/SiO2Absorbing Sol–Gel Coatings for Solar Energy Conversion at High Temperature, 10.1021/acs.chemmater.5b00731
Hansen Thomas W., DeLaRiva Andrew T., Challa Sivakumar R., Datye Abhaya K., Sintering of Catalytic Nanoparticles: Particle Migration or Ostwald Ripening?, 10.1021/ar3002427
F. Garisto , AECL-9552, Whiteshell Nucl. Res. Establ., 1988
Simonsen Søren B., Chorkendorff Ib, Dahl Søren, Skoglundh Magnus, Sehested Jens, Helveg Stig, Direct Observations of Oxygen-induced Platinum Nanoparticle Ripening Studied by In Situ TEM, 10.1021/ja910094r
Yoshida Kenta, Bright Alexander, Tanaka Nobuo, Direct observation of the initial process of Ostwald ripening using spherical aberration-corrected transmission electron microscopy, 10.1093/jmicro/dfr100
Benavidez Angelica D., Kovarik Libor, Genc Arda, Agrawal Nitin, Larsson Elin M., Hansen Thomas W., Karim Ayman M., Datye Abhaya K., Environmental Transmission Electron Microscopy Study of the Origins of Anomalous Particle Size Distributions in Supported Metal Catalysts, 10.1021/cs3005117
Hevia Miguel A.G., Amrute Amol P., Schmidt Timm, Pérez-Ramírez Javier, Transient mechanistic study of the gas-phase HCl oxidation to Cl2 on bulk and supported RuO2 catalysts, 10.1016/j.jcat.2010.09.009
Madhavaram H, Idriss H, Wendt S, Kim Y.D, Knapp M, Over H, Aßmann J, Löffler E, Muhler M, Oxidation Reactions over RuO2: A Comparative Study of the Reactivity of the (110) Single Crystal and Polycrystalline Surfaces, 10.1006/jcat.2001.3281
Balint, Society, 932 (2001)
Fernández Camila, Sassoye Capucine, Debecker Damien P., Sanchez Clément, Ruiz Patricio, Effect of the size and distribution of supported Ru nanoparticles on their activity in ammonia synthesis under mild reaction conditions, 10.1016/j.apcata.2013.09.039
Fernández Camila, Sassoye Capucine, Flores Nicolas, Escalona Néstor, Gaigneaux Eric M., Sanchez Clément, Ruiz Patricio, Insights in the mechanism of deposition and growth of RuO2 colloidal nanoparticles over alumina. Implications on the activity for ammonia synthesis, 10.1016/j.apcata.2015.05.023
Karelovic Alejandro, Ruiz Patricio, CO2 hydrogenation at low temperature over Rh/γ-Al2O3 catalysts: Effect of the metal particle size on catalytic performances and reaction mechanism, 10.1016/j.apcatb.2011.11.043
Chiu Cheng-chau, Genest Alexander, Borgna Armando, Rösch Notker, C–O cleavage of aromatic oxygenates over ruthenium catalysts. A computational study of reactions at step sites, 10.1039/c5cp01027f
Solymosi F., Erdöhelyi A., Methanation of CO2 on Supported Rhodium Catalysts, New Horizons in Catalysis, Proceedings of the 7th International Congress on Catalysis (1981) ISBN:9780444997395 p.1448-1449, 10.1016/s0167-2991(08)64768-0
Fisher Ian A., Bell Alexis T., A Comparative Study of CO and CO2Hydrogenation over Rh/SiO2, 10.1006/jcat.1996.0259
Carenco Sophie, Sassoye Capucine, Faustini Marco, Eloy Pierre, Debecker Damien P., Bluhm Hendrik, Salmeron Miquel, The Active State of Supported Ruthenium Oxide Nanoparticles during Carbon Dioxide Methanation, 10.1021/acs.jpcc.6b06313
Dufour Fabien, Cassaignon Sophie, Durupthy Olivier, Colbeau-Justin Christophe, Chanéac Corinne, Do TiO2 Nanoparticles Really Taste Better When Cooked in a Microwave Oven?, 10.1002/ejic.201101269
Magne C., Dufour F., Labat F., Lancel G., Durupthy O., Cassaignon S., Pauporté Th., Effects of TiO2 nanoparticle polymorphism on dye-sensitized solar cell photovoltaic properties, 10.1016/j.jphotochem.2012.01.015
Batenburg K.J., Bals S., Sijbers J., Kübel C., Midgley P.A., Hernandez J.C., Kaiser U., Encina E.R., Coronado E.A., Van Tendeloo G., 3D imaging of nanomaterials by discrete tomography, 10.1016/j.ultramic.2009.01.009
Zürner Andreas, Döblinger Markus, Cauda Valentina, Wei Ruoshan, Bein Thomas, Discrete tomography of demanding samples based on a modified SIRT algorithm, 10.1016/j.ultramic.2012.01.015
J. Rodriguez-Carvajal and T.Roisnel, WinPLOTR, a graphic tool for powder diffraction, Institut Laue Langevin, 2016
Patterson A. L., The Scherrer Formula for X-Ray Particle Size Determination, 10.1103/physrev.56.978
Over H., Seitsonen A.P., Lundgren E., Smedh M., Andersen J.N., On the origin of the Ru-3d5/2 satellite feature from RuO2(), 10.1016/s0039-6028(01)01979-3
Okal J., Zawadzki M., Kępiński L., Krajczyk L., Tylus W., The use of hydrogen chemisorption for the determination of Ru dispersion in Ru/γ-alumina catalysts, 10.1016/j.apcata.2006.12.005
Référence bibliographique
Kim, Ara ; Sanchez, C. ; Patriarche, G. ; Ersen, O. ; Moldovan, S. ; et. al. Selective CO2 methanation on Ru/TiO2 catalysts: unravelling the decisive role of the TiO2 support crystal structure. In: Catalysis Science & Technology, Vol. 6, p. 8117-8128 (2016)