Menu utilisateur

Accès à distance ? S'identifier sur le proxy UCLouvain

Negatively Charged Lipids as a Potential Target for New Amphiphilic Aminoglycoside Antibiotics: A BIOPHYSICAL STUDY

  • Open access
  • PDF
  • 1.57 M
  1. Fauci Anthony S., Marston Hilary D., The Perpetual Challenge of Antimicrobial Resistance, 10.1001/jama.2014.2465
  2. Dalebroux Zachary D., Matamouros Susana, Whittington Dale, Bishop Russell E., Miller Samuel I., PhoPQ regulates acidic glycerophospholipid content of theSalmonellaTyphimurium outer membrane, 10.1073/pnas.1316901111
  3. Dalebroux Zachary D., Edrozo Mauna B., Pfuetzner Richard A., Ressl Susanne, Kulasekara Bridget R., Blanc Marie-Pierre, Miller Samuel I., Delivery of Cardiolipins to the Salmonella Outer Membrane Is Necessary for Survival within Host Tissues and Virulence, 10.1016/j.chom.2015.03.003
  4. Epand Richard M., Epand Raquel F., Lipid domains in bacterial membranes and the action of antimicrobial agents, 10.1016/j.bbamem.2008.08.023
  5. Olofsson Gerd, Sparr Emma, Ionization Constants pKa of Cardiolipin, 10.1371/journal.pone.0073040
  6. Schlame Michael, Thematic Review Series: Glycerolipids.Cardiolipin synthesis for the assembly of bacterial and mitochondrial membranes, 10.1194/jlr.r700018-jlr200
  7. Boeris P.S., Domenech C.E., Lucchesi G.I., Modification of phospholipid composition inPseudomonas putidaA ATCC 12633 induced by contact with tetradecyltrimethylammonium, 10.1111/j.1365-2672.2007.03346.x
  8. Dowhan W., MOLECULAR BASIS FOR MEMBRANE PHOSPHOLIPID DIVERSITY:Why Are There So Many Lipids?, 10.1146/annurev.biochem.66.1.199
  9. Rogasevskaia Tatiana P., Coorssen Jens R., A new approach to the molecular analysis of docking, priming, and regulated membrane fusion, 10.1007/s12154-011-0056-8
  10. van den Brink-van der Laan E., Boots J.-W. P., Spelbrink R. E. J., Kool G. M., Breukink E., Killian J. A., de Kruijff B., Membrane Interaction of the Glycosyltransferase MurG: a Special Role for Cardiolipin, 10.1128/jb.185.13.3773-3779.2003
  11. Fishov Itzhak, Norris Vic, Membrane heterogeneity created by transertion is a global regulator in bacteria, 10.1016/j.mib.2012.11.001
  12. Epand Richard M., Epand Raquel F., Bacterial membrane lipids in the action of antimicrobial agents, 10.1002/psc.1319
  13. Payne D. J., MICROBIOLOGY: Desperately Seeking New Antibiotics, 10.1126/science.1164586
  14. Vanounou Sharon, Parola Abraham H., Fishov Itzhak, Phosphatidylethanolamine and phosphatidylglycerol are segregated into different domains in bacterial membrane. A study with pyrene-labelled phospholipids : Bacterial membrane domains, 10.1046/j.1365-2958.2003.03614.x
  15. Oliver P. M., Crooks J. A., Leidl M., Yoon E. J., Saghatelian A., Weibel D. B., Localization of Anionic Phospholipids in Escherichia coli Cells, 10.1128/jb.01877-14
  16. Salay Luiz C., Ferreira Marystela, Oliveira Osvaldo N., Nakaie Clovis R., Schreier Shirley, Headgroup specificity for the interaction of the antimicrobial peptide tritrpticin with phospholipid Langmuir monolayers, 10.1016/j.colsurfb.2012.05.002
  17. Baussanne Isabelle, Bussière Antoine, Halder Somnath, Ganem-Elbaz Carine, Ouberai Myriam, Riou Mickael, Paris Jean-Marc, Ennifar Eric, Mingeot-Leclercq Marie-Paule, Décout Jean-Luc, Synthesis and Antimicrobial Evaluation of Amphiphilic Neamine Derivatives, 10.1021/jm900615h
  18. Ouberai Myriam, El Garch Farid, Bussiere Antoine, Riou Mickael, Alsteens David, Lins Laurence, Baussanne Isabelle, Dufrêne Yves F., Brasseur Robert, Decout Jean-Luc, Mingeot-Leclercq Marie-Paule, The Pseudomonas aeruginosa membranes: A target for a new amphiphilic aminoglycoside derivative?, 10.1016/j.bbamem.2011.01.014
  19. Zimmermann Louis, Bussière Antoine, Ouberai Myriam, Baussanne Isabelle, Jolivalt Claude, Mingeot-Leclercq Marie-Paule, Décout Jean-Luc, Tuning the Antibacterial Activity of Amphiphilic Neamine Derivatives and Comparison to Paromamine Homologues, 10.1021/jm401148j
  20. Sautrey G., Zimmermann L., Deleu M., Delbar A., Souza Machado L., Jeannot K., Van Bambeke F., Buyck J. M., Decout J.-L., Mingeot-Leclercq M.-P., New Amphiphilic Neamine Derivatives Active against Resistant Pseudomonas aeruginosa and Their Interactions with Lipopolysaccharides, 10.1128/aac.02536-13
  21. Lopes Silvia C., Neves Cristina S., Eaton Peter, Gameiro Paula, Improved model systems for bacterial membranes from differing species: Theimportance of varying composition in PE/PG/cardiolipin ternary mixtures, 10.3109/09687688.2012.700491
  22. Cheng John T.J., Hale John D., Elliott Melissa, Hancock Robert E.W., Straus Suzana K., The importance of bacterial membrane composition in the structure and function of aurein 2.2 and selected variants, 10.1016/j.bbamem.2010.11.025
  23. Matsumoto Kouji, Kusaka Jin, Nishibori Ayako, Hara Hiroshi, Lipid domains in bacterial membranes, 10.1111/j.1365-2958.2006.05317.x
  24. Murzyn Krzysztof, Róg Tomasz, Pasenkiewicz-Gierula Marta, Phosphatidylethanolamine-Phosphatidylglycerol Bilayer as a Model of the Inner Bacterial Membrane, 10.1529/biophysj.104.048835
  25. Epand Richard M., Rotem Shahar, Mor Amram, Berno Bob, Epand Raquel F., Bacterial Membranes as Predictors of Antimicrobial Potency, 10.1021/ja8062327
  26. Van Bambeke Françoise, Mingeot-Leclercq Marie-Paule, Schanck André, Brasseur Robert, Tulkens Paul M., Alterations in membrane permeability induced by aminoglycoside antibiotics: studies on liposomes and cultured cells, 10.1016/0922-4106(93)90073-i
  27. Lelkes, P. I. (1984) Liposome Technology, pp. 225–246, CRC Press, Inc., Boca Raton, FL
  28. Bartlett, J. Biol. Chem, 234, 466 (1959)
  29. Angelova M. I., Soléau S., Méléard Ph., Faucon F., Bothorel P., Preparation of giant vesicles by external AC electric fields. Kinetics and applications, Progress in Colloid & Polymer Science ISBN:9783798509139 p.127-131, 10.1007/bfb0116295
  30. Loh B, Grant C, Hancock R E, Use of the fluorescent probe 1-N-phenylnaphthylamine to study the interactions of aminoglycoside antibiotics with the outer membrane of Pseudomonas aeruginosa., 10.1128/aac.26.4.546
  31. Wu Manhong, Hancock Robert E. W., Interaction of the Cyclic Antimicrobial Cationic Peptide Bactenecin with the Outer and Cytoplasmic Membrane, 10.1074/jbc.274.1.29
  32. Di Pasquale Eric, Salmi-Smail Chanaz, Brunel Jean-Michel, Sanchez Patrick, Fantini Jacques, Maresca Marc, Biophysical studies of the interaction of squalamine and other cationic amphiphilic molecules with bacterial and eukaryotic membranes: importance of the distribution coefficient in membrane selectivity, 10.1016/j.chemphyslip.2009.10.006
  33. Krasne S., Interactions of voltage-sensing dyes with membranes. II. Spectrophotometric and electrical correlates of cyanine-dye adsorption to membranes, 10.1016/s0006-3495(80)85106-x
  34. Saxena Rahul, Fingland Nicholas, Patil Digvijay, Sharma Anjali, Crooke Elliott, Crosstalk between DnaA Protein, the Initiator of Escherichia coli Chromosomal Replication, and Acidic Phospholipids Present in Bacterial Membranes, 10.3390/ijms14048517
  35. Smith J.C., Potential-sensitive molecular probes in membranes of bioenergetic relevance, 10.1016/0005-2728(90)90002-l
  36. Weinstein J., Yoshikami S, Henkart P, Blumenthal R, Hagins W., Liposome-cell interaction: transfer and intracellular release of a trapped fluorescent marker, 10.1126/science.835007
  37. Tiriveedhi Venkataswarup, Butko Peter, A Fluorescence Spectroscopy Study on the Interactions of the TAT-PTD Peptide with Model Lipid Membranes, 10.1021/bi602527t
  38. Lobasso Simona, Saponetti Matilde Sublimi, Polidoro Francesco, Lopalco Patrizia, Urbanija Jasna, Kralj-Iglic Veronika, Corcelli Angela, Archaebacterial lipid membranes as models to study the interaction of 10-N-nonyl acridine orange with phospholipids, 10.1016/j.chemphyslip.2008.09.002
  39. Mileykovskaya Eugenia, Ryan Andrea C., Mo Xi, Lin Chun-Chieh, Khalaf Khaled I., Dowhan William, Garrett Teresa A., Phosphatidic Acid andN-Acylphosphatidylethanolamine Form Membrane Domains inEscherichia coliMutant Lacking Cardiolipin and Phosphatidylglycerol, 10.1074/jbc.m805189200
  40. Alam Jahangir Md., Kobayashi Toshihide, Yamazaki Masahito, The Single-Giant Unilamellar Vesicle Method Reveals Lysenin-Induced Pore Formation in Lipid Membranes Containing Sphingomyelin, 10.1021/bi300448g
  41. Hoekstra Dick, De Boer Tiny, Klappe Karin, Wilschut Jan, Fluorescence method for measuring the kinetics of fusion between biological membranes, 10.1021/bi00319a002
  42. Düzgüneş Nejat, Faneca Henrique, Lima Maria C. Pedroso, Methods to Monitor Liposome Fusion, Permeability, and Interaction with Cells, Methods in Molecular Biology (2010) ISBN:9781607614463 p.209-232, 10.1007/978-1-60761-447-0_16
  43. Niven, Mulholland, Cell membrane integrity and lysis in Lactococcus lactis: the detection of a population of permeable cells in post-logarithmic phase cultures, 10.1046/j.1365-2672.1997.00316.x
  44. Apellániz Beatriz, Nieva José L., Schwille Petra, García-Sáez Ana J., All-or-None versus Graded: Single-Vesicle Analysis Reveals Lipid Composition Effects on Membrane Permeabilization, 10.1016/j.bpj.2010.09.027
  45. Goehring Nathan W., Beckwith Jon, Diverse Paths to Midcell: Assembly of the Bacterial Cell Division Machinery, 10.1016/j.cub.2005.06.038
  46. Wesołowska, Acta Biochim. Pol, 56, 33 (2009)
  47. Wadhwani P., Epand R.F., Heidenreich N., Bürck J., Ulrich A.S., Epand R.M., Membrane-Active Peptides and the Clustering of Anionic Lipids, 10.1016/j.bpj.2012.06.004
  48. Meers Paul, Ali Shaukat, Erukulla Ravi, Janoff Andrew S, Novel inner monolayer fusion assays reveal differential monolayer mixing associated with cation-dependent membrane fusion, 10.1016/s0005-2736(00)00224-8
  49. Demel R.A., Geurts van Kessel W.S.M., Zwaal R.F.A., Roelofsen B., van Deenen L.L.M., Relation between various phospholipase actions on human red cell membranes and the interfacial phospholipid pressure in monolayers, 10.1016/0005-2736(75)90045-0
  50. Marsh Derek, Lateral pressure in membranes, 10.1016/s0304-4157(96)00009-3
  51. Ghorbal Salma Kloula Ben, Chatti Abdelwaheb, Sethom Mohamed Marwan, Maalej Lobna, Mihoub Mouadh, Kefacha Sana, Feki Moncef, Landoulsi Ahmed, Hassen Abdennaceur, Changes in Membrane Fatty Acid Composition of Pseudomonas aeruginosa in Response to UV-C Radiations, 10.1007/s00284-013-0342-5
  52. Bernal Patricia, Segura Ana, Ramos Juan-Luis, Compensatory role of thecis-trans-isomerase and cardiolipin synthase in the membrane fluidity ofPseudomonas putidaDOT-T1E : Cis-trans-isomerase and cardiolipin synthase, 10.1111/j.1462-2920.2007.01283.x
  53. Minkler Paul E., Hoppel Charles L., Separation and characterization of cardiolipin molecular species by reverse-phase ion pair high-performance liquid chromatography-mass spectrometry, 10.1194/jlr.d002857
  54. Kozlovsky Yonathan, Chernomordik Leonid V., Kozlov Michael M., Lipid Intermediates in Membrane Fusion: Formation, Structure, and Decay of Hemifusion Diaphragm, 10.1016/s0006-3495(02)75274-0
  55. Epand R. F., The Apoptotic Protein tBid Promotes Leakage by Altering Membrane Curvature, 10.1074/jbc.m202396200
  56. Sadeghi Sina, Müller Marcus, Vink Richard L.C., Raft Formation in Lipid Bilayers Coupled to Curvature, 10.1016/j.bpj.2014.07.072
  57. Beales Paul A., Bergstrom Chris L., Geerts Nienke, Groves John T., Vanderlick T. Kyle, Single Vesicle Observations of the Cardiolipin−CytochromecInteraction: Induction of Membrane Morphology Changes, 10.1021/la104924c
  58. Basañez G., Membrane fusion: the process and its energy suppliers, 10.1007/s00018-002-8523-6
  59. Nikolaus Jörg, Warner Jason M., O'Shaughnessy Ben, Herrmann Andreas, The Pathway to Membrane Fusion through Hemifusion, Current Topics in Membranes (2011) ISBN:9780123858917 p.1-32, 10.1016/b978-0-12-385891-7.00001-5
  60. Chernomordik Leonid V, Kozlov Michael M, Mechanics of membrane fusion, 10.1038/nsmb.1455
  61. Katsov K., Müller M., Schick M., Field Theoretic Study of Bilayer Membrane Fusion. I. Hemifusion Mechanism, 10.1529/biophysj.103.038943
  62. Feigenson G. W., On the nature of calcium ion binding between phosphatidylserine lamellae, 10.1021/bi00367a071
  63. Mattai Jairajh, Hauser Helmut, Demel Rudy A., Shipley G. Graham, Interactions of metal ions with phosphatidylserine bilayer membranes: effect of hydrocarbon chain unsaturation, 10.1021/bi00431a051
  64. Ohki Shinpei, A mechanism of divalent ion-induced phosphatidylserine membrane fusion, 10.1016/0005-2736(82)90182-1
  65. Chanturiya A., Scaria P., Woodle M.C., The Role of Membrane Lateral Tension in Calcium-Induced Membrane Fusion, 10.1007/s002320001076
  66. Chernomordik Leonid V., Frolov Vadim A., Leikina Eugenia, Bronk Peter, Zimmerberg Joshua, The Pathway of Membrane Fusion Catalyzed by Influenza Hemagglutinin: Restriction of Lipids, Hemifusion, and Lipidic Fusion Pore Formation, 10.1083/jcb.140.6.1369
  67. Gessmann D., Chung Y. H., Danoff E. J., Plummer A. M., Sandlin C. W., Zaccai N. R., Fleming K. G., Outer membrane  -barrel protein folding is physically controlled by periplasmic lipid head groups and BamA, 10.1073/pnas.1322473111
  68. Siegel David P., The Modified Stalk Mechanism of Lamellar/Inverted Phase Transitions and Its Implications for Membrane Fusion, 10.1016/s0006-3495(99)77197-3
  69. Ortiz Antonio, Killian J. Antoinette, Verkleij Arie J., Wilschut Jan, Membrane Fusion and the Lamellar-to-Inverted-Hexagonal Phase Transition in Cardiolipin Vesicle Systems Induced by Divalent Cations, 10.1016/s0006-3495(99)77041-4
  70. Siegel D.P., Epand R.M., The mechanism of lamellar-to-inverted hexagonal phase transitions in phosphatidylethanolamine: implications for membrane fusion mechanisms, 10.1016/s0006-3495(97)78336-x
  71. Mileykovskaya Eugenia, Dowhan William, Cardiolipin membrane domains in prokaryotes and eukaryotes, 10.1016/j.bbamem.2009.04.003
  72. Renner L. D., Weibel D. B., Cardiolipin microdomains localize to negatively curved regions of Escherichia coli membranes, 10.1073/pnas.1015757108
  73. Wydro Paweł, The influence of cardiolipin on phosphatidylglycerol/phosphatidylethanolamine monolayers—Studies on ternary films imitating bacterial membranes, 10.1016/j.colsurfb.2013.01.053
  74. Favini-Stabile Sandy, Contreras-Martel Carlos, Thielens Nicole, Dessen Andréa, MreB and MurG as scaffolds for the cytoplasmic steps of peptidoglycan biosynthesis : Mur ligases interact with MreB and MurG, 10.1111/1462-2920.12171
  75. Mohammadi Tamimount, Karczmarek Aneta, Crouvoisier Muriel, Bouhss Ahmed, Mengin-Lecreulx Dominique, den Blaauwen Tanneke, The essential peptidoglycan glycosyltransferase MurG forms a complex with proteins involved in lateral envelope growth as well as with proteins involved in cell division in Escherichia coli, 10.1111/j.1365-2958.2007.05851.x
  76. Bramkamp Marc, van Baarle Suey, Division site selection in rod-shaped bacteria, 10.1016/j.mib.2009.10.002
  77. Renner Lars D., Weibel Douglas B., MinD and MinE Interact with Anionic Phospholipids and Regulate Division Plane Formation inEscherichia coli, 10.1074/jbc.m112.407817
  78. Evans E.A., Waugh R., Osmotic correction to elastic area compressibility measurements on red cell membrane, 10.1016/s0006-3495(77)85551-3
  79. KANEKO Hiroyuki, TAKAMI Hideto, INOUE Akira, HORIKOSHI Koki, Effects of Hydrostatic Pressure and Temperature on Growth and Lipid Composition of the Inner Membrane of BarotolerantPseudomonassp. BT1 Isolated from the Deep-sea, 10.1271/bbb.64.72
  80. Stöckl Martin, Fischer Patricia, Wanker Erich, Herrmann Andreas, α-Synuclein Selectively Binds to Anionic Phospholipids Embedded in Liquid-Disordered Domains, 10.1016/j.jmb.2007.11.051
  81. Ibarguren Maitane, López David J., Encinar José A., González-Ros José M., Busquets Xavier, Escribá Pablo V., Partitioning of liquid-ordered/liquid-disordered membrane microdomains induced by the fluidifying effect of 2-hydroxylated fatty acid derivatives, 10.1016/j.bbamem.2013.06.014
  82. Chopra I., Molecular mechanisms involved in the transport of antibiotics into bacteria, 10.1017/s0031182000085966
  83. Broniatowski Marcin, Mastalerz Patrycja, Flasiński Michał, Studies of the interactions of ursane-type bioactive terpenes with the model of Escherichia coli inner membrane—Langmuir monolayer approach, 10.1016/j.bbamem.2014.10.024
Référence bibliographique Sautrey, Guillaume ; El Khoury, Micheline ; Giro Dos Santos, Andreia ; Zimmermann, Louis ; Deleu, Magali ; et. al. Negatively Charged Lipids as a Potential Target for New Amphiphilic Aminoglycoside Antibiotics: A BIOPHYSICAL STUDY. In: Journal of Biological Chemistry, Vol. 291, no.26, p. 13864-13874 (2016)
Permalien http://hdl.handle.net/2078.1/175325