User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

In vivo dual-delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 (DPP4) inhibitor through composites prepared by microfluidics for diabetes therapy.

  1. Leader Benjamin, Baca Quentin J., Golan David E., Protein therapeutics: a summary and pharmacological classification, 10.1038/nrd2399
  2. Fonte Pedro, Araújo Francisca, Silva Cátia, Pereira Carla, Reis Salette, Santos Hélder A., Sarmento Bruno, Polymer-based nanoparticles for oral insulin delivery: Revisited approaches, 10.1016/j.biotechadv.2015.02.010
  3. Li Xiuying, Guo Shiyan, Zhu Chunliu, Zhu Quanlei, Gan Yong, Rantanen Jukka, Rahbek Ulrik Lytt, Hovgaard Lars, Yang Mingshi, Intestinal mucosa permeability following oral insulin delivery using core shell corona nanolipoparticles, 10.1016/j.biomaterials.2013.08.048
  4. Soudry-Kochavi Liat, Naraykin Natalya, Nassar Taher, Benita Simon, Improved oral absorption of exenatide using an original nanoencapsulation and microencapsulation approach, 10.1016/j.jconrel.2015.09.012
  5. Yu Mikyung, Wu Jun, Shi Jinjun, Farokhzad Omid C., Nanotechnology for protein delivery: Overview and perspectives, 10.1016/j.jconrel.2015.10.012
  6. Morishita Mariko, Peppas Nicholas A., Is the oral route possible for peptide and protein drug delivery?, 10.1016/j.drudis.2006.08.005
  7. Pereira Carla, Araujo Francisca, Granja Pedro, Santos Helder, Sarmento Bruno, Targeting Membrane Transporters and Receptors as a mean to Optimize Orally Delivered Biotechnological based Drugs through Nanoparticle Delivery Systems, 10.2174/1389201015666140915152330
  8. Araújo Francisca, Shrestha Neha, Shahbazi Mohammad-Ali, Liu Dongfei, Herranz-Blanco Bárbara, Mäkilä Ermei M., Salonen Jarno J., Hirvonen Jouni T., Granja Pedro L., Sarmento Bruno, Santos Hélder A., Microfluidic Assembly of a Multifunctional Tailorable Composite System Designed for Site Specific Combined Oral Delivery of Peptide Drugs, 10.1021/acsnano.5b02762
  9. Araújo Francisca, Fonte Pedro, Santos Hélder A., Sarmento Bruno, Oral Delivery of Glucagon-like Peptide-1 and Analogs: Alternatives for Diabetes Control?, 10.1177/193229681200600630
  10. Baggio Laurie L., Drucker Daniel J., Biology of Incretins: GLP-1 and GIP, 10.1053/j.gastro.2007.03.054
  11. Araujo Francisca, Shrestha Neha, Granja Pedro, Hirvonen Jouni, Santos Hélder, Sarmento Bruno, Antihyperglycemic Potential of Incretins Orally Delivered via Nano and Microsystems and Subsequent Glucoregulatory Effects, 10.2174/1389201015666140915150312
  12. Hosseininasab Sara, Pashaei-Asl Roghiyeh, Khandaghi Amir Ahmad, Nasrabadi Hamid Tayefi, Nejati-Koshki Kazem, Akbarzadeh Abolfazl, Joo Sang Woo, Hanifehpour Younes, Davaran Soodabeh, Synthesis, Characterization, andIn vitroStudies of PLGA-PEG Nanoparticles for Oral Insulin Delivery, 10.1111/cbdd.12318
  13. Danhier Fabienne, Ansorena Eduardo, Silva Joana M., Coco Régis, Le Breton Aude, Préat Véronique, PLGA-based nanoparticles: An overview of biomedical applications, 10.1016/j.jconrel.2012.01.043
  14. Zhu Guanchen, Zhang Yifan, Wang Kaikai, Zhao Xiaozhi, Lian Huibo, Wang Wei, Wang Haoran, Wu Jinhui, Hu Yiqiao, Guo Hongqian, Visualized intravesical floating hydrogel encapsulating vaporized perfluoropentane for controlled drug release, 10.3109/10717544.2015.1101791
  15. Canali M. Magdalena, Pedrotti Luciano P., Balsinde Jesús, Ibarra Cristina, Correa Silvia G., Chitosan enhances transcellular permeability in human and rat intestine epithelium, 10.1016/j.ejpb.2011.11.007
  16. Chen Ting, Kagan Leonid, Mager Donald E., Population Pharmacodynamic Modeling of Exenatide After 2-Week Treatment in STZ/NA Diabetic Rats, 10.1002/jps.23682
  17. Shi Nian-Qiu, Qi Xian-Rong, Xiang Bai, Zhang Yong, A survey on “Trojan Horse” peptides: Opportunities, issues and controlled entry to “Troy”, 10.1016/j.jconrel.2014.08.014
  18. Bechara Chérine, Sagan Sandrine, Cell-penetrating peptides: 20 years later, where do we stand?, 10.1016/j.febslet.2013.04.031
  19. Zhang Hongbo, Liu Dongfei, Shahbazi Mohammad-Ali, Mäkilä Ermei, Herranz-Blanco Bárbara, Salonen Jarno, Hirvonen Jouni, Santos Hélder A., Fabrication of a Multifunctional Nano-in-micro Drug Delivery Platform by Microfluidic Templated Encapsulation of Porous Silicon in Polymer Matrix, 10.1002/adma.201400953
  20. Liu Dongfei, Zhang Hongbo, Herranz-Blanco Bárbara, Mäkilä Ermei, Lehto Vesa-Pekka, Salonen Jarno, Hirvonen Jouni, Santos Hélder A., Microfluidic Assembly of Monodisperse Multistage pH-Responsive Polymer/Porous Silicon Composites for Precisely Controlled Multi-Drug Delivery, 10.1002/smll.201303740
  21. Zhao Xin, Zhao Jingwen, Lin Zhi Yuan (William), Pan Guoqing, Zhu Yueqi, Cheng Yingsheng, Cui Wenguo, Self-coated interfacial layer at organic/inorganic phase for temporally controlling dual-drug delivery from electrospun fibers, 10.1016/j.colsurfb.2015.03.058
  22. Yuan Ziming, Zhao Jingwen, Yang Zhili, Wang Xiaohu, Zheng Qi, Cui Wenguo, Integrated therapy on residual tumor after palliative operation using dual-phase drug releasing electrospun fibrous scaffolds, 10.1016/j.jconrel.2015.05.256
  23. Hoshi Noboru, Yano Hiroko, Hirashima Kaoru, Kitagawa Haruo, Fukuda Yoshio, TOXICOLOGICAL STUDIES OF HYDROXYPROPYLMETHYLCELLULOSE ACETATE SUCCINATE : ACUTE TOXICITY IN RATS AND RABBITS, AND SUBCHRONIC AND CHRONIC TOXICITIES IN RATS, 10.2131/jts.10.supplementii_147
  24. Shrestha Neha, Shahbazi Mohammad-Ali, Araújo Francisca, Mäkilä Ermei, Raula Janne, Kauppinen Esko I., Salonen Jarno, Sarmento Bruno, Hirvonen Jouni, Santos Hélder A., Multistage pH-responsive mucoadhesive nanocarriers prepared by aerosol flow reactor technology: A controlled dual protein-drug delivery system, 10.1016/j.biomaterials.2015.07.045
  25. Araújo Francisca, Shrestha Neha, Shahbazi Mohammed-Ali, Fonte Pedro, Mäkilä Ermei M., Salonen Jarno J., Hirvonen Jouni T., Granja Pedro L., Santos Hélder A., Sarmento Bruno, The impact of nanoparticles on the mucosal translocation and transport of GLP-1 across the intestinal epithelium, 10.1016/j.biomaterials.2014.07.026
  26. Huotari Anne, Xu Wujun, Mönkäre Juha, Kovalainen Miia, Herzig Karl-Heinz, Lehto Vesa-Pekka, Järvinen Kristiina, Effect of surface chemistry of porous silicon microparticles on glucagon-like peptide-1 (GLP-1) loading, release and biological activity, 10.1016/j.ijpharm.2013.06.063
  27. Masiello P., Broca C., Gross R., Roye M., Manteghetti M., Hillaire-Buys D., Novelli M., Ribes G., Experimental NIDDM: Development of a New Model in Adult Rats Administered Streptozotocin and Nicotinamide, 10.2337/diab.47.2.224
  28. Jin Cheng-Hao, Chae Su Young, Son Sohee, Kim Tae Hyung, Um Key An, Youn Yu Seok, Lee Seulki, Lee Kang Choon, A new orally available glucagon-like peptide-1 receptor agonist, biotinylated exendin-4, displays improved hypoglycemic effects in db/db mice, 10.1016/j.jconrel.2008.09.091
  29. Shrestha Neha, Shahbazi Mohammad-Ali, Araújo Francisca, Zhang Hongbo, Mäkilä Ermei M., Kauppila Jussi, Sarmento Bruno, Salonen Jarno J., Hirvonen Jouni T., Santos Hélder A., Chitosan-modified porous silicon microparticles for enhanced permeability of insulin across intestinal cell monolayers, 10.1016/j.biomaterials.2014.04.104
  30. Liu Xiaoli, Liu Chang, Zhang Wenjian, Xie Cao, Wei Gang, Lu Weiyue, Oligoarginine-modified biodegradable nanoparticles improve the intestinal absorption of insulin, 10.1016/j.ijpharm.2013.03.033
  31. Kamei Noriyasu, Morishita Mariko, Eda Yoshimi, Ida Nobuo, Nishio Reiji, Takayama Kozo, Usefulness of cell-penetrating peptides to improve intestinal insulin absorption, 10.1016/j.jconrel.2008.08.001
  32. Verma Ayush, Stellacci Francesco, Effect of Surface Properties on Nanoparticle–Cell Interactions, 10.1002/smll.200901158
  33. Badole Sachin L., Mahamuni Sagar P., Bagul Pranita P., Khose Rekha D., Joshi Anuja C., Ghule Arvindkumar E., Bodhankar Subhash L., Raut Chandrashekhar G., Khedkar Vijay M., Coutinho Evans C., Wagh Nilesh K., Cycloart-23-ene-3β, 25-diol stimulates GLP-1 (7–36) amide secretion in streptozotocin–nicotinamide induced diabetic Sprague Dawley rats: A mechanistic approach, 10.1016/j.ejphar.2012.10.002
  34. Ghasemi Asghar, Khalifi S., Jedi S., Streptozotocin-nicotinamide-induced rat model of type 2 diabetes (review), 10.1556/aphysiol.101.2014.4.2
  35. Masiello Pellegrino, Animal models of type 2 diabetes with reduced pancreatic β-cell mass, 10.1016/j.biocel.2005.09.007
  36. Palsamy P., Subramanian S., Resveratrol, a natural phytoalexin, normalizes hyperglycemia in streptozotocin-nicotinamide induced experimental diabetic rats, 10.1016/j.biopha.2008.06.037
  37. Nayak Yogendra, Hillemane Venkatachalam, Daroji Vijay Kumar, Jayashree B. S., Unnikrishnan M. K., Antidiabetic Activity of Benzopyrone Analogues in Nicotinamide-Streptozotocin Induced Type 2 Diabetes in Rats, 10.1155/2014/854267
  38. YOUN Y, Improved peroral delivery of glucagon-like peptide-1 by site-specific biotin modification: Design, preparation, and biological evaluation, 10.1016/j.ejpb.2007.07.009
  39. Nguyen Ho-Ngoc, Wey Shiaw-Pyng, Juang Jyuhn-Huarng, Sonaje Kiran, Ho Yi-Cheng, Chuang Er-Yuan, Hsu Chia-Wei, Yen Tzu-Chen, Lin Kun-Ju, Sung Hsing-Wen, The glucose-lowering potential of exendin-4 orally delivered via a pH-sensitive nanoparticle vehicle and effects on subsequent insulin secretion in vivo, 10.1016/j.biomaterials.2010.12.044
  40. Lynn F. C., Pamir N., Ng E. H.C., McIntosh C. H.S., Kieffer T. J., Pederson R. A., Defective Glucose-Dependent Insulinotropic Polypeptide Receptor Expression in Diabetic Fatty Zucker Rats, 10.2337/diabetes.50.5.1004
  41. Garber A. J., Long-Acting Glucagon-Like Peptide 1 Receptor Agonists: A review of their efficacy and tolerability, 10.2337/dc11-s231
  42. Reimer M., Holst J., Ahren B, Long-term inhibition of dipeptidyl peptidase IV improves glucose tolerance and preserves islet function in mice, 10.1530/eje.0.1460717
  43. Wu Lin, Olverling Anna, Fransson Liselotte, Ortsäter Henrik, Kappe Camilla, Gao Xin, Sjöholm Åke, Early intervention with liraglutide improves glucose tolerance without affecting islet microcirculation in young Goto–Kakizaki rats, 10.1016/j.regpep.2012.05.091
  44. van Genugten R. E., van Raalte D. H., Diamant M., Dipeptidyl peptidase-4 inhibitors and preservation of pancreatic islet-cell function: a critical appraisal of the evidence, 10.1111/j.1463-1326.2011.01473.x
  45. Moritoh Yusuke, Takeuchi Koji, Asakawa Tomoko, Kataoka Osamu, Odaka Hiroyuki, The dipeptidyl peptidase-4 inhibitor alogliptin in combination with pioglitazone improves glycemic control, lipid profiles, and increases pancreatic insulin content in ob/ob mice, 10.1016/j.ejphar.2008.11.017
  46. Moritoh Yusuke, Takeuchi Koji, Asakawa Tomoko, Kataoka Osamu, Odaka Hiroyuki, Chronic administration of alogliptin, a novel, potent, and highly selective dipeptidyl peptidase-4 inhibitor, improves glycemic control and beta-cell function in obese diabetic ob/ob mice, 10.1016/j.ejphar.2008.04.018
  47. Green B. D., Liu H. K., McCluskey J. T., Duffy N. A., O'Harte F. P. M., McClenaghan N. H., Flatt P R., Function of a long-term, GLP-1-treated, insulin-secreting cell line is improved by preventing DPP IV-mediated degradation of GLP-1, 10.1111/j.1463-1326.2004.00430.x
  48. Tian Lei, Gao Jie, Hao Jianqiang, Zhang Yu, Yi Huimin, O'Brien Timothy D., Sorenson Robert, Luo Jian, Guo Zhiguang, Reversal of New-Onset Diabetes through Modulating Inflammation and Stimulating β-Cell Replication in Nonobese Diabetic Mice by a Dipeptidyl Peptidase IV Inhibitor, 10.1210/en.2010-0068
  49. Balkan B., Kwasnik L., Miserendino R., Holst J. J., Li X., Inhibition of dipeptidyl peptidase IV with NVP-DPP728 increases plasma GLP-1 (7-36 amide) concentrations and improves oral glucose tolerance in obese Zucker rats, 10.1007/s001250051445
Bibliographic reference Araujo, Francisca ; Shrestha, Neha ; Gomes, Maria Jose ; Herranz, Barbara ; Liu, Dongfei ; et. al. In vivo dual-delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 (DPP4) inhibitor through composites prepared by microfluidics for diabetes therapy.. In: Nanoscale, Vol. 8, no.20, p. 10706-13 (19 May 2016)
Permanent URL http://hdl.handle.net/2078/181191