De Boever, Patrick
Ilyin, V.
Forget-Hanus, D.
[UCL]
Van der Auwera, Géraldine
[UCL]
Mahillon, Jacques
[UCL]
Mergeay, M.
Mobile genetic elements (MGE) such as phages, plasmids and transposons play a crucial role in bacterial adaptation and evolution. These MGE mobilize and reorganize genes within a given genome or between bacterial cells. The impact of space flight conditions on these processes is largely unknown. The Mobilisatsia/Plasmida experiment was set up to investigate the impact of space flight conditions on plasmid-mediated conjugation. The experiment was done aboard the International Space Station during the Soyuz Mission 8S (April 19(th) until April 30(th) 2004). An experiment was performed with the Gram-positive Bacillus thuringiensis AND931 (carrying the conjugative plasmid pXO16), B. thuringiensis 4Q7 (with mobilizable plasmid pC194) and B. thuringiensis GBJ002 (final recipient). A second experiment was carried out with the Gram-negative Escherichia coli CM140 (carrying the conjugative plasmid RP4), E. coli CM1962 (with the mobilizable plasmid pMOL222) and Cupriavidus metallidurans AE815 (final recipient). It was observed by selective platings that plasmid exchange between the Gram-positive bacterial strains occurred in the space flight experiment. It is speculated that the latter plasmid exchange occurs more efficient than in the ground control experiment. No significant differences could be observed between space flight and ground control for the Gram-negative bacteria. The data indicate that plasmid exchange between microorganisms is occurring under space flight conditions. Since microorganisms are endogenous to any spacecraft and their presence considered as a possible jeopardy for manned space exploration, more experiments are needed to evaluate the occurrence and implications of microbial adaptation and evolution via MGE.
- Smets, F., Barkay, T.: Horizontal gene transfer: perspectives at a crossroads of scientific disciplines. Nature Reviews Microbiology vol. 3, p. 675 (2005)
- Frost, L. S., Leplae, R., Summers, A. O., Toussaint, A.: Mobile genetic elements: the agents of open source evolution. Nature Reviews Microbiology vol. 3, p. 722 (2005)
- Top, E., De Smet, I., Verstraete, W., Dijkmans, R., Mergeay, M.: Exogenous isolation of mobilizing plasmids from polluted soils and sludges. Applied and Environmental Microbiology vol. 60, p. 831 (1994)
- Top, E. M., Springael, D.: The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Current Opinion in Biotechnology vol. 14, p. 262 (2003)
- Hastings, P. J., Rosenberg, S. M., Slack, A.: Antibiotic-induced lateral transfer of antibiotic resistance. Trends in Microbiology vol. 12, p. 401 (2004)
- Mathur, S., Singh, R.: Antibiotic resistance in food lactic acid bacteria-a review. International Journal of Food Microbiology vol. 105, p. 281 (2005)
- Novikova, N., De Boever, P., Poddubko, S., Deshevaya, E., Polikarpov, N., Rakova, N., Coninx, I., Mergeay, M.: Survey of environmental bio- contamination on board the International Space Station. Research in Microbiology vol. 157, p. 5 (2006)
- Novikova, N. D.: Review of the knowledge of microbial contamination of the Russian manned spacecraft. Microbial Ecology vol. 47, p. 127 (2004)
- Pierson, D. L.: Microbial contamination of spacecraft. Gravitational and Space Biology Bulletin vol. 14, p. 1 (2001)
- Guarnieri, V., Gaia, E., Battocchio, L., Pitzurra, M., Savino, A., Pasquarella, C., Vago, T., Cotronei, V.: New methods for microbial contamination monitoring: an experiment on board the MIR orbital station. Acta Astronautica vol. 40, p. 195 (1997)
- Klintworth, R., Reher, H. J., Viktorov, A. N., Bohle, D.: Biological induced corrosion of materials II: new test methods and experiences from MIR station. Acta Astronautica vol. 44, p. 569 (1999)
- Ciferi, O., Tiboni, O., Di Pascuale, G., Orlandoni, A. M., Marchesi, M. L.: Effects of microgravity on genetic recombination inEscherichia coli. Naturwissenschaften vol. 73, p. 418 (1986)
- Juergensmeyer, M. A., Juergensmeyer, E. A., Guikema, J. A.: Plasmid acquisition in microgravity. Journal of Gravitational Physiology vol. 2, p. 161 (1995)
- Van der Auwera, G., Timmery, S., Hoton, F., Mahillon, J.: Plasmid exchanges among members of the Bacillus cereus group in foodstuffs. International Journal of Food Microbiology doi:10.1016/j.ijfoodmicro.2006.06.030, p. (2006)
- Grohmann, E., Muth, G., Espinosa, M.: Conjugative plasmid transfer in Gram-positive bacteria. Microbiology and Molecular Biology Reviews vol. 67, p. 277 (2003)
- Vandamme, P., Coenye, T.: Taxonomy of the genus Cupriavidus: a tale of the lost and found. International Journal of Systematic and Evolutionary Microbiology vol. 54, p. 2285 (2004)
- Andrup, L., Smidt, L., Andersen, L.: Kinetics of conjugative transfer: a study of the plasmid pXO16 from Bacillus thuringiensis subsp. israelensis. Plasmid vol. 40, p. 30 (1998)
- Jensen, G. Wilcks, A., Petersen, S. S., Damgaard, J., Baum, J. A., Andrup, L.: The genetic basis of aggregation system in Bacillus thuringiensis subsp. israelensis is located on the large conjugative plasmid pXO16. Journal of Bacteriology vol. 177, p. 2914 (1995)
- Springael, D., Kreps, S., Mergeay, M.: Identification of a catabolic transposon, Tn4371, carrying biphenyl and 4-chlorobiphenyl degradation genes in Alcaligenes eutrophus A5. Journal of Bacteriology vol. 175, p. 1674 (1993)
- Mergeay, M.: personal communication.
- Iordanescu, S., Surdeanu, M., Della Latta, P., Novick, R.: Incompatibility and molecular relationships between small staphylococcal plasmids carrying the same resistance marker. Plasmid vol. 1, p. 468 (1978)
- Pansegrau, W., Lanka, E., Barth, P. T., Figurski, D., Guiney, D. G., Haas, D., Helinski, D. R., Schwab, H., Stanisich, V. A., Thomas, M.: Complete nucleotide sequence of Birmingham IncP? plasmids: compilation and comparative analysis. Journal of Molecular Biology vol. 239, p. 623 (1994)
- Neidhardt, F. C., Bloch, P. L., Smith, D. F.: Culture Medium for Enterobacteria. Journal of Bacteriology vol. 119, p. 736 (1974)
- Mergeay, M., Nies, D., Schlegel, H. G., Gerits, J., Charles, P., Van Gijsegem, F.: Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. Journal of Bacteriology vol. 162, p. 328 (1985)
- Klaus, D. M., inEncyclopedia of Environmental Microbiology, John Wiley & Sons, 2003, pp. 2996.
- Leys, N. M. E. J., Hendrickx, L., De Boever, P., Baatout, S., Mergeay, M.: Space flight effects on bacterial physiology. Journal of Biological Regulators and Homeostatic Agents vol. 18, p. 193 (2004)
- Klaus, D., Simske, S., Todd, P., Stodieck, L.: Investigation of space flight effects onEscherichia coli and a proposed model of underlying physical mechanisms. Microbiology vol. 143, p. 449 (1997)
- Nickerson, A., Ott, M., Wilson, J. W., Ramamurthy, R., Pierson, D. L.: Microbial responses to microgravity and other low-shear environments. Microbiology and Molecular Biology Reviews vol. 68, p. 345 (2004)
Bibliographic reference |
De Boever, Patrick ; Ilyin, V. ; Forget-Hanus, D. ; Van der Auwera, Géraldine ; Mahillon, Jacques ; et. al. Conjugation-mediated plasmid exchange between bacteria grown under space flight conditions. In: Microgravity - Science and Technology : international journal for microgravity research and applications, Vol. 19, no. 5-6, p. 138-144 (2007) |
Permanent URL |
http://hdl.handle.net/2078.1/90608 |