Fully recrystallized commercial-purity aluminum sheets were deformed by limiting dome height
tests, the following strain modes: uniaxial tension (US), near plane strain tension (PS), and
equibiaxial tension (BS) were identified using standard procedure. The deformation texture
developments differed significantly depending on the strain mode. Although the full constraints
Taylor (FCT) model captured the texture developments in US, it failed to reproduce deformation
textures in PS and especially in BS. The Advanced LAMEL (ALAMEL) model and the
crystal plasticity finite element method (CPFEM) were, however, successful with respect to all
three strain modes. Microtexture data brought out interesting observations of orientation
gradients. First, the orientation gradients increased from US to PS to BS. Second, such gradients
were mostly around initial (or prior deformation) grain boundary regions. A simple
algorithm, and an associated computer program, was developed to demarcate such near
boundary gradient zones (NBGZs). The area fraction and severity of NBGZ seemed to affect
the texture development; FCT was reasonably successful at low NBGZ, whereas high NBGZ
required the ALAMEL and the CPFEM models that are capable of addressing strain heterogeneity
and grain interactions.
G.I. Taylor: J. Inst. Met., 1938, vol. 62, pp. 307-24.
Raabe D., Simulation of rolling textures of b.c.c. metals considering grain interactions and crystallographic slip on {110}, {112} and {123} planes, 10.1016/0921-5093(94)09770-4
Robert W, Piot D, Driver J.H, A rapid deformation texture model incorporating grain interactions, 10.1016/j.scriptamat.2004.02.007
ENGLER O, CRUMBACH M, LI S, Alloy-dependent rolling texture simulation of aluminium alloys with a grain-interaction model, 10.1016/j.actamat.2005.01.032
Van Houtte Paul, Kanjarla Anand Krishna, Van Bael Albert, Seefeldt Marc, Delannay Laurent, Multiscale modelling of the plastic anisotropy and deformation texture of polycrystalline materials, 10.1016/j.euromechsol.2006.05.003
Leffers T., Ray R.K., The brass-type texture and its deviation from the copper-type texture, 10.1016/j.pmatsci.2008.09.002
Kanjarla Anand Krishna, Van Houtte Paul, Delannay Laurent, Assessment of plastic heterogeneity in grain interaction models using crystal plasticity finite element method, 10.1016/j.ijplas.2009.05.005
Delannay L., Kalidindi S.R., Van Houtte P., Quantitative prediction of textures in aluminium cold rolled to moderate strains, 10.1016/s0921-5093(01)01966-9
VANHOUTTE P, Deformation texture prediction: from the Taylor model to the advanced Lamel model, 10.1016/j.ijplas.2004.04.011
Delannay Laurent, Jacques Pascal J., Kalidindi Surya R., Finite element modeling of crystal plasticity with grains shaped as truncated octahedrons, 10.1016/j.ijplas.2006.01.008
Yoon J.W., Barlat F., Gracio J.J., Rauch E., Anisotropic strain hardening behavior in simple shear for cube textured aluminum alloy sheets, 10.1016/j.ijplas.2005.03.014
Mika David P., Dawson Paul R., Effects of grain interaction on deformation in polycrystals, 10.1016/s0921-5093(98)00824-7
Barbe Fabrice, Forest Samuel, Cailletaud Georges, Intergranular and intragranular behavior of polycrystalline aggregates.Part 2: Results, 10.1016/s0749-6419(00)00062-0
Diard O., Leclercq S., Rousselier G., Cailletaud G., Evaluation of finite element based analysis of 3D multicrystalline aggregates plasticity, 10.1016/j.ijplas.2004.05.017
Delaire F., Raphanel J.L., Rey C., Plastic heterogeneities of a copper multicrystal deformed in uniaxial tension: experimental study and finite element simulations, 10.1016/s1359-6454(99)00408-5
Lienert U., Han T.-S., Almer J., Dawson P.R., Leffers T., Margulies L., Nielsen S.F., Poulsen H.F., Schmidt S., Investigating the effect of grain interaction during plastic deformation of copper, 10.1016/j.actamat.2004.05.051
MUSIENKO A, TATSCHL A, SCHMIDEGG K, KOLEDNIK O, PIPPAN R, CAILLETAUD G, Three-dimensional finite element simulation of a polycrystalline copper specimen, 10.1016/j.actamat.2007.01.053
Raabe D., Sachtleber M., Zhao Z., Roters F., Zaefferer S., Micromechanical and macromechanical effects in grain scale polycrystal plasticity experimentation and simulation, 10.1016/s1359-6454(01)00242-7
Lebensohn Ricardo A., Brenner Renald, Castelnau Olivier, Rollett Anthony D., Orientation image-based micromechanical modelling of subgrain texture evolution in polycrystalline copper, 10.1016/j.actamat.2008.04.016
Raabe D., Zhao Z., Mao W., On the dependence of in-grain subdivision and deformation texture of aluminum on grain interaction, 10.1016/s1359-6454(02)00276-8
Molinari A., Canova G.R., Ahzi S., A self consistent approach of the large deformation polycrystal viscoplasticity, 10.1016/0001-6160(87)90297-5
Lebensohn R.A., Tomé C.N., A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys, 10.1016/0956-7151(93)90130-k
Bronkhorst C. A., Kalidindi S. R., Anand L., Polycrystalline Plasticity and the Evolution of Crystallographic Texture in FCC Metals, 10.1098/rsta.1992.0111
B. Verlinden, J. Driver, I. Samajdar, and R.D. Doherty: Thermo-Mechanical Processing of Metallic Materials, Pergamon Materials Series, R.W. Cahn, ed., Elsevier, Amsterdam, The Netherlands, 2007.
Bay B., Hansen N., Hughes D.A., Kuhlmann-Wilsdorf D., Overview no. 96 evolution of f.c.c. deformation structures in polyslip, 10.1016/0956-7151(92)90296-q
Wert John A., Huang Xiaoxu, Winther Grethe, Pantleon Wolfgang, Poulsen Henning F., Revealing deformation microstructures, 10.1016/s1369-7021(07)70206-7
A.K. Kanjarla, L. Delannay, and P. Van Houtte: 2010, Metall. Mater. Trans. A, in press.
Hansen N., Jensen D. J., Development of microstructure in FCC metals during cold work, 10.1098/rsta.1999.0384
Gil Sevillano J., van Houtte P., Aernoudt E., Large strain work hardening and textures, 10.1016/0079-6425(80)90001-8
Kuhlmann-Wilsdorf D., Hansen Niels, Geometrically necessary, incidental and subgrain boundaries, 10.1016/0956-716x(91)90451-6
Liu Q., Juul Jensen D., Hansen N., Effect of grain orientation on deformation structure in cold-rolled polycrystalline aluminium, 10.1016/s1359-6454(98)00229-8
Wu G.L., Godfrey A., Liu W., Liu Q., Macroscopic subdivision of columnar grain aluminium with {001}〈uv0〉 orientations following low strain deformation, 10.1016/s1359-6462(01)01091-0
Basson F., Driver J.H., Deformation banding mechanisms during plane strain compression of cube-oriented f.c.c. crystals, 10.1016/s1359-6454(00)00042-2
Kalidindi S. R., Bhattacharyya A., Doherty R. D., Detailed analyses of grain-scale plastic deformation in columnar polycrystalline aluminium using orientation image mapping and crystal plasticity models, 10.1098/rspa.2003.1260
Dillamore I. L., Morris P. L., Smith C. J. E., Hutchinson W. B., Transition Bands and Recrystallization in Metals, 10.1098/rspa.1972.0120
Wert J, Dislocation boundary formation in a cold-rolled cube-oriented Al single crystal, 10.1016/s1359-6454(96)00348-5
Delannay L, Mishin O.V, Jensen D.Juu, Van Houtte P, Quantitative analysis of grain subdivision in cold rolled aluminium, 10.1016/s1359-6454(01)00150-1
Mishra S.K., Pant P., Narasimhan K., Rollett A.D., Samajdar I., On the widths of orientation gradient zones adjacent to grain boundaries, 10.1016/j.scriptamat.2009.03.062
Tóth László S., Estrin Yuri, Lapovok Rimma, Gu Chengfan, A model of grain fragmentation based on lattice curvature, 10.1016/j.actamat.2009.11.020
VAN BOXEL S., SEEFELDT M., VERLINDEN B., VAN HOUTTE P., Visualization of grain subdivision by analysing the misorientations within a grain using electron backscatter diffraction, 10.1111/j.1365-2818.2005.01467.x
Paul H., Driver J.H., Wajda W., Strain hardening and microstructure evolution of channel-die compressed aluminium bicrystals, 10.1016/j.msea.2007.05.044
Delannay L., Logé R.E., Chastel Y., Signorelli J.W., Van Houtte P., Measurement of In-Grain Orientation Gradients by EBSD and Comparison with Finite Element Results, 10.1002/adem.200300376
Leffers Torben, A model for rolling deformation with grain subdivision. Part II: The subsequent stage, 10.1016/s0749-6419(00)00060-7
Seefeldt M, Delannay L, Peeters B, Aernoudt E, Van Houtte P, Modelling the initial stage of grain subdivision with the help of a coupled substructure and texture evolution algorithm, 10.1016/s1359-6454(01)00126-4
Sachtleber M, Zhao Z, Raabe D, Experimental investigation of plastic grain interaction, 10.1016/s0921-5093(01)01974-8
Toth L.S, Gilormini P, Jonas J.J, Effect of rate sensitivity on the stability of torsion textures, 10.1016/0001-6160(88)90045-4
S.K. Mishra: Ph.D. Dissertation, IIT, Bombay, India, 2009.
Mishra S. K., Desai Sharvari G., Pant Prita, Narasimhan K., Samajdar I., Improved predictability of forming limit curves through microstructural inputs, 10.1007/s12289-009-0391-2
S.S. Hecker: Mech. Eng. Q., 1974, vol. 14, pp. 30-36.
S.S. Hecker: Sheet Metal Industries, 1975, vol. 58, pp. 671-76.
Raveendra S., Mishra S., Mani Krishna K.V., Weiland H., Samajdar I., Patterns of Recrystallization in Warm- and Hot-Deformed AA6022, 10.1007/s11661-008-9620-4
P. Van Houtte: The MTM-FHM Software System, version 2, MTM-KULeuven, Brussels, Belgium, 1995.
Tóth László S., Van Houtte Paul, Discretization Techniques for
Orientation Distribution Functions, 10.1155/tsm.19.229
Cicalè S., Samajdar I., Verlinden B., Abbruzzese G., Houtte P. Van, Development of Cold Rolled Texture and Microstructure in a Hot Band Fe-3%Si Steel., 10.2355/isijinternational.42.770
Zhou Y., Neale K.W., Influence of f.c.c. rolling textures on biaxial sheet stretching, 10.1016/0956-7151(94)90041-8
Ray Atish, Diak B.J., Grain interaction effect on the stability of the {110}<112>“brass” orientation in an aluminum multi-crystal, 10.1016/j.scriptamat.2010.01.003
Bibliographic reference
Raveendra, S. ; Kanjarla, A. K. ; Paranjape, H. ; Mishra, S. K. ; Mishra, S. ; et. al. Strain Mode Dependence of Deformation Texture Developments: Microstructural Origin. In: Metallurgical and materials transactions a-physical metallurgy andmaterials science, Vol. 42A, no. 7, p. 2113-2124 (2011)