Accès à distance ? S'identifier sur le proxy UCLouvain
A computational model for rhythmic and discrete movements in uni- and bimanual coordination.
Primary tabs
Document type | Article de périodique (Journal article) – Article de recherche – Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S. |
---|---|
Access type | Accès restreint |
Publication date | 2009 |
Language | Anglais |
Journal information | "Neural computation" - Vol. 21, no. 5, p. 1335-70 (2009) |
Peer reviewed | yes |
issn | 0899-7667 |
Publication status | Publié |
Affiliations |
Université de Liège
- Systems and Modeling Northeastern University - Action Lab UCL - FSA/INMA - Département d'ingénierie mathématique UCL - SST/IMMC/MEED - Mechatronic, Electrical Energy, and Dynamics Systems |
MESH Subject | Computer Simulation ; Functional Laterality ; Hand - physiology ; Humans ; Models, Biological ; Movement - physiology ; Periodicity ; Psychomotor Performance - physiology ; Reaction Time - physiology |
Links |
- Adamovich S. V., J. Neurophysiol., 77, 1460 (1997)
- Asatryan D. G., Biophysics, 10, 925 (1965)
- Beek P.J, Peper C.E, Daffertshofer A, Modeling Rhythmic Interlimb Coordination: Beyond the Haken–Kelso–Bunz Model, 10.1006/brcg.2001.1310
- Bennett D. J., Hollerbach J. M., Xu Y., Hunter I. W., Time-varying stiffness of human elbow joint during cyclic voluntary movement, 10.1007/bf02259118
- Brown T. Graham, On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system, 10.1113/jphysiol.1914.sp001646
- Buchanan John J., Park Jin-Hoon, Shea Charles H., Target width scaling in a repetitive aiming task: switching between cyclical and discrete units of action, 10.1007/s00221-006-0589-1
- Buchli Jonas, Righetti Ludovic, Ijspeert Auke Jan, Engineering entrainment and adaptation in limit cycle systems : From biological inspiration to applications in robotics, 10.1007/s00422-006-0128-y
- Buschges A., Sensory Control and Organization of Neural Networks Mediating Coordination of Multisegmental Organs for Locomotion, 10.1152/jn.00615.2004
- Cohen A., Neural control of rhythmic movements in vertebrates (1988)
- Collins J. J., Richmond S. A., Hard-wired central pattern generators for quadrupedal locomotion, 10.1007/bf00198915
- de Rugy Aymar, Sternad Dagmar, Interaction between discrete and rhythmic movements: reaction time and phase of discrete movement initiation during oscillatory movements, 10.1016/j.brainres.2003.09.031
- de Rugy Aymar, Wei Kunlin, Müller Hermann, Sternad Dagmar, Actively tracking ‘passive’ stability in a ball bouncing task, 10.1016/s0006-8993(03)02976-7
- Desmurget M., J. Neurosci., 21, 2919 (2001)
- Dietz Volker, Do human bipeds use quadrupedal coordination?, 10.1016/s0166-2236(02)02229-4
- DIMITRIJEVIC MILAN R., GERASIMENKO YURI, PINTER MICHAELA M., Evidence for a Spinal Central Pattern Generator in Humansa, 10.1111/j.1749-6632.1998.tb09062.x
- Duysens Jacques, Van de Crommert Henry W.A.A, Neural control of locomotion; Part 1: The central pattern generator from cats to humans, 10.1016/s0966-6362(97)00042-8
- Eliassen James C., Baynes Kathleen, Gazzaniga Michael S., Direction information coordinated via the posterior third of the corpus callosum during bimanual movements, 10.1007/s002210050884
- Esposti Roberto, Cavallari Paolo, Baldissera Fausto, Feedback control of the limbs position during voluntary rhythmic oscillation, 10.1007/s00422-007-0159-z
- Feldman A. G., Biophysics, 11, 565 (1966)
- Feldman A. G., Biophysics, 11, 766 (1966)
- Feldman Anatol G., Once More on the Equilibrium-Point Hypothesis (λ Model) for Motor Control, 10.1080/00222895.1986.10735369
- Flash T., J. Neurosci., 5, 1688 (1985)
- Frigon Alain, Rossignol Serge, Experiments and models of sensorimotor interactions during locomotion, 10.1007/s00422-006-0129-x
- Grossberg Stephen, Pribe Christopher, Cohen Michael A., Neural control of interlimb oscillations, 10.1007/s004220050374
- Haken H., Kelso J. A. S., Bunz H., A theoretical model of phase transitions in human hand movements, 10.1007/bf00336922
- Hinder Mark R., Milner Theodore E., The Case for an Internal Dynamics ModelversusEquilibrium Point Control in Human Movement, 10.1113/jphysiol.2002.033845
- Hogan Neville, Sternad Dagmar, On rhythmic and discrete movements: reflections, definitions and implications for motor control, 10.1007/s00221-007-0899-y
- Huys Raoul, Studenka Breanna E., Rheaume Nicole L., Zelaznik Howard N., Jirsa Viktor K., Distinct Timing Mechanisms Produce Discrete and Continuous Movements, 10.1371/journal.pcbi.1000061
- Ijspeert A. J., Crespi A., Ryczko D., Cabelguen J.-M., From Swimming to Walking with a Salamander Robot Driven by a Spinal Cord Model, 10.1126/science.1138353
- Jirsa Viktor K, Scott Kelso J A, The Excitator as a Minimal Model for the Coordination Dynamics of Discrete and Rhythmic Movement Generation, 10.3200/jmbr.37.1.35-51
- Jordan M. I., The cognitive neurosciences (1999)
- Kalaska John F, Scott Stephen H, Cisek Paul, Sergio Lauren E, Cortical control of reaching movements, 10.1016/s0959-4388(97)80146-8
- Kawashima N., Alternate Leg Movement Amplifies Locomotor-Like Muscle Activity in Spinal Cord Injured Persons, 10.1152/jn.00817.2004
- Kawato Mitsuo, Internal models for motor control and trajectory planning, 10.1016/s0959-4388(99)00028-8
- Kelso J. A. S., Dynamic patterns. The self-organization of brain and behavior (1995)
- Kelso J., Southard D., Goodman D, On the nature of human interlimb coordination, 10.1126/science.424729
- Kistemaker D. A., Van Soest A. J., Bobbert M. F., Equilibrium Point Control Cannot be Refuted by Experimental Reconstruction of Equilibrium Point Trajectories, 10.1152/jn.00287.2007
- Kuo Arthur D., The Relative Roles of Feedforward and Feedback in the Control of Rhythmic Movements, 10.1123/mcj.6.2.129
- Latash M., Control of human movement (1993)
- Levin Oron, Suy Ellen, Huybrechts Jurgen, Vangheluwe Sophie, Swinnen Stephan P, Bimanual coordination involving homologous and heterologous joint combinations: when lower stability is associated with higher flexibility, 10.1016/j.bbr.2003.10.029
- Liu D., Todorov E., Evidence for the Flexible Sensorimotor Strategies Predicted by Optimal Feedback Control, 10.1523/jneurosci.1110-06.2007
- Marder E, Motor pattern generation, 10.1016/s0959-4388(00)00157-4
- Marder Eve, Bucher Dirk, Central pattern generators and the control of rhythmic movements, 10.1016/s0960-9822(01)00581-4
- Matsuoka Kiyotoshi, Sustained oscillations generated by mutually inhibiting neurons with adaptation, 10.1007/bf00449593
- Matsuoka Kiyotoshi, Mechanisms of frequency and pattern control in the neural rhythm generators, 10.1007/bf00319514
- Nagashino Hirofumi, Kelso J. A. S.,
Phase transitions in oscillatory neural networks , 10.1117/12.140094 - Raftery Aaron, Cusumano Joseph, Sternad Dagmar, Chaotic Frequency Scaling in a Coupled Oscillator Model for Free Rhythmic Actions, 10.1162/neco.2008.20.1.205
- Ronsse Renaud, Lefèvre Philippe, Sepulchre Rodolphe, Robotics and neuroscience: A rhythmic interaction, 10.1016/j.neunet.2008.03.005
- Ronsse Renaud, Thonnard Jean-Louis, Lefèvre Philippe, Sepulchre Rodolphe, Control of bimanual rhythmic movements: trading efficiency for robustness depending on the context, 10.1007/s00221-008-1297-9
- Schaal Stefan, Sternad Dagmar, Osu Rieko, Kawato Mitsuo, Rhythmic arm movement is not discrete, 10.1038/nn1322
- Schöner G., A dynamic theory of coordination of discrete movement, 10.1007/bf00203449
- Schoner G, Kelso J., Dynamic pattern generation in behavioral and neural systems, 10.1126/science.3281253
- Shadmehr R., The computational neurobiology of reaching and pointing: A foundation for motor learning (2005)
- Simoni Mario F., DeWeerth Stephen P., Sensory Feedback in a Half-Center Oscillator Model, 10.1109/tbme.2006.886868
- Smits-Engelsman B.C.M., Swinnen S.P., Duysens J., The advantage of cyclic over discrete movements remains evident following changes in load and amplitude, 10.1016/j.neulet.2005.11.001
- Sternad Dagmar, Towards a Unified Theory of Rhythmic and Discrete Movements — Behavioral, Modeling and Imaging Results, Understanding Complex Systems ISBN:9783540744764 p.105-133, 10.1007/978-3-540-74479-5_6
- Sternad Dagmar, Corcos Daniel, Effect of Task and Instruction on Patterns of Muscle Activation: Wachholder and Beyond, 10.1123/mcj.5.4.307
- Sternad Dagmar, de Rugy Aymar, Pataky Todd, Dean William, Interaction of discrete and rhythmic movements over a wide range of periods, 10.1007/s00221-002-1219-1
- Sternad Dagmar, Dean William J., Schaal Stefan, Interaction of rhythmic and discrete pattern generators in single-joint movements, 10.1016/s0167-9457(00)00028-2
- Sternad Dagmar, Wei Kunlin, Diedrichsen Jörn, Ivry Richard B., Intermanual interactions during initiation and production of rhythmic and discrete movements in individuals lacking a corpus callosum, 10.1007/s00221-006-0640-2
- Swinnen Stephan P., INTERMANUAL COORDINATION: FROM BEHAVIOURAL PRINCIPLES TO NEURAL-NETWORK INTERACTIONS, 10.1038/nrn807
- Swinnen Stephan P., Wenderoth Nicole, Two hands, one brain: cognitive neuroscience of bimanual skill, 10.1016/j.tics.2003.10.017
- Taga Gentaro, A model of the neuro-musculo-skeletal system for human locomotion : I. Emergence of basic gait, 10.1007/bf00204048
- Taga Gentaro, A model of the neuro-musculo-skeletal system for human locomotion : II. Real-time adaptability under various constraints, 10.1007/bf00204049
- Temprado J.J, Swinnen S.P, Carson R.G, Tourment A, Laurent M, Interaction of directional, neuromuscular and egocentric constraints on the stability of preferred bimanual coordination patterns, 10.1016/s0167-9457(03)00049-6
- Todorov Emanuel, Optimality principles in sensorimotor control, 10.1038/nn1309
- Todorov Emanuel, Jordan Michael I., Optimal feedback control as a theory of motor coordination, 10.1038/nn963
- Turvey M. T., Coordination., 10.1037/0003-066x.45.8.938
- Van de Crommert Henry W.A.A, Mulder Theo, Duysens Jacques, Neural control of locomotion: sensory control of the central pattern generator and its relation to treadmill training, 10.1016/s0966-6362(98)00010-1
- van Mourik Anke M., Beek Peter J., Discrete and cyclical movements: unified dynamics or separate control?, 10.1016/j.actpsy.2004.06.001
- Vavoulis Dimitris V., Straub Volko A., Kemenes Ildikó, Kemenes György, Feng Jianfeng, Benjamin Paul R., Dynamic control of a central pattern generator circuit: a computational model of the snail feeding network : Computational modelling of the snail feeding network, 10.1111/j.1460-9568.2007.05517.x
- Verdaasdonk B.W., Koopman H.F.J.M., Helm F.C.T. Van Der, Energy efficient and robust rhythmic limb movement by central pattern generators, 10.1016/j.neunet.2005.09.003
- Wachholder K., Altenburger H., Beiträge zur Physiologie der willkürlichen Bewegung : X. Mitteilung. Einzelbewegungen, 10.1007/bf01741942
- Wei K., Dijkstra T. M. H., Sternad D., Passive Stability and Active Control in a Rhythmic Task, 10.1152/jn.00742.2007
- Wei Kunlin, Wertman Gary, Sternad Dagmar, Interactions between Rhythmic and Discrete Components in a Bimanual Task, 10.1123/mcj.7.2.134
- Williams Carrie A., DeWeerth Stephen P., A comparison of resonance tuning with positive versus negative sensory feedback, 10.1007/s00422-007-0150-8
- Williamson Matthew M., Neural control of rhythmic arm movements, 10.1016/s0893-6080(98)00048-3
- Wilson H. R., Spikes, decisions, and actions: The dynamical foundations of neuroscience (1999)
- Wolpert Daniel M., Ghahramani Zoubin, 10.1038/81497
- Wolpert Daniel M, Miall R.Chris, Kawato Mitsuo, Internal models in the cerebellum, 10.1016/s1364-6613(98)01221-2
- Zehr E Paul, Carroll Timothy J, Chua Romeo, Collins David F, Frigon Alain, Haridas Carlos, Hundza Sandra R, Thompson Aiko Kido, Possible contributions of CPG activity to the control of rhythmic human arm movement, 10.1139/y04-056
- Zehr E. Paul, Duysens Jacques, Regulation of Arm and Leg Movement during Human Locomotion, 10.1177/1073858404264680
Bibliographic reference | Ronsse, Renaud ; Sternad, Dagmar ; Lefèvre, Philippe. A computational model for rhythmic and discrete movements in uni- and bimanual coordination.. In: Neural computation, Vol. 21, no. 5, p. 1335-70 (2009) |
---|---|
Permanent URL | http://hdl.handle.net/2078.1/75433 |