Claeys, Tom
[UCL]
Grava, T
We obtain an asymptotic expansion for the solution of the Cauchy problem for the Korteweg-de Vries (KdV) equation u(t) + 6uu(x) + epsilon(2)u(xxx) = 0, u(x, t = 0, epsilon) = u(0)(x), for epsilon small, near the point of gradient catastrophe (x(c), t(c)) for the solution of the dispersionless equation u(t) + 6uu(x) = 0. The sub-leading term in this expansion is described by the smooth solution of a fourth order ODE, which is a higher order analogue to the Painleve I equation. This is in accordance with a conjecture of Dubrovin, suggesting that this is a universal phenomenon for any Hamiltonian perturbation of a hyperbolic equation. Using the Deift/Zhou steepest descent method applied on the Riemann-Hilbert problem for the KdV equation, we are able to prove the asymptotic expansion rigorously in a double scaling limit.
- Abramowitz M., Stegun I.A.: Handbook of mathematical functions. Dover Publications, New York (1968)
- Baik J., Deift P., Johansson K.: On the distribution of the length of the longest increasing subsequence of random permutations. J. Amer. Math. Soc. 12, 1119–1178 (1999)
- Beals, R., Deift, P., Tomei, C.: Direct and inverse scattering on the line. In: Mathematical Surveys and Monographs 28, Amer. Math. Soc., Providence, RI: 1988
- Bressan, A.: One dimensional hyperbolic systems of conservation laws. In: Current developments in mathematics 2002, Somerville, MA: Int. Press, 2003, pp. 1–37
- Bowick M.J., Brézin E.: Universal scaling of the tail of the density of eigenvalues in random matrix models. Phys. Lett. B 268(1), 21–28 (1991)
- Brézin E., Marinari E., Parisi G.: A nonperturbative ambiguity free solution of a string model. Phys. Lett. B 242(1), 35–38 (1990)
- Camassa R., Holm D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)
- Claeys T., Vanlessen M.: The existence of a real pole-free solution of the fourth order analogue of the Painlevé I equation. Nonlinearity 20, 1163–1184 (2007)
- Claeys T., Vanlessen M.: Universality of a double scaling limit near singular edge points in random matrix models. Commun. Math. Phys. 273, 499–532 (2007)
- Degiovanni L., Magri F., Sciacca V.: On deformation of Poisson manifolds of hydrodynamic type. Commun. Math. Phys. 253(1), 1–24 (2005)
- Deift, P.: Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach. Courant Lecture Notes 3, New York: New York University, 1999
- Deift P., Kriecherbauer T., McLaughlin K.T-R, Venakides S., Zhou X.: Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Comm. Pure Appl. Math. 52, 1335–1425 (1999)
- Deift P., Kriecherbauer T., McLaughlin K.T-R, Venakides S., Zhou X.: Strong asymptotics of orthogonal polynomials with respect to exponential weights. Comm. Pure Appl. Math. 52, 1491–1552 (1999)
- Deift P., Venakides S., Zhou X.: New result in small dispersion KdV by an extension of the steepest descent method for Riemann-Hilbert problems. Internat. Math. Res. Notices 6, 285–299 (1997)
- Deift P., Venakides S., Zhou X.: An extension of the steepest descent method for Riemann-Hilbert problems: the small dispersion limit of the Korteweg-de Vries. Proc. Natl. Acad. Sc. USA 95(2), 450–454 (1998)
- Deift P., Zhou X.: A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation. Ann. Math. 137(2), 295–368 (1993)
- Dubrovin B.: On Hamiltonian perturbations of hyperbolic systems of conservation laws, II: universality of critical behaviour. Commun. Math. Phys. 267, 117–139 (2006)
- Dubrovin, B., Grava, T., Klein, C.: On universality of critical behaviour in the focusing nonlinear Schrödinger equation, elliptic umbilic catastrophe and the tritronquée solution to the Painlevé-I equation. Preprint: http://babbage.sissa.it/abs/0704.0501 , 2007
- Dubrovin, B., Zhang, Y. : Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov-Witten invariants. Preprint: http://xxx.lanl.gov/math.DG/0108160 , 2001
- Fujiié S.: Semiclassical representation of the scattering matrix by a Feynman integral. Commun. Math. Phys. 198(2), 407–425 (1998)
- Fujiié S., Ramond T.: Matrice de scattering et résonances associées à une orbite hétérocline (French) [Scattering matrix and resonances associated with a heteroclinic orbit]. Ann. Inst. H. Poincaré Phys. Théor. 69(1), 31–82 (1998)
- Gardner S.C., Greene J.M., Kruskal M.D., Miura R.M.: Korteweg-de Vries equation and generalizations. VI. Methods for exact solution. Comm. Pure Appl. Math. 27, 97–133 (1974)
- Getzler E.: A Darboux theorem for Hamiltonian operators in the formal calculus of variations. Duke Math. J. 111, 535–560 (2002)
- Grava T., Klein C.: Numerical solution of the small dispersion limit of Korteweg de Vries and Whitham equations. Comm. Pure Appl. Math. 60, 1623–1664 (2007)
- Grava, T., Klein, C.: Numerical study of a multiscale expansion of KdV and Camassa-Holm equation. Preprint http://babbage.sissa.it/abs/math-ph/0702038 , 2007
- Gurevich A.G., Pitaevskii L.P.: Non stationary structure of a collisionless shock waves. JEPT Lett. 17, 193–195 (1973)
- Kapaev A.A.: Weakly nonlinear solutions of equation $${P_{I}^{2}}$$ . J. Math. Sc. 73(4), 468–481 (1995)
- Lax P.D.: Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math. 21, 467–490 (1968)
- Lax, P.D., Levermore, C.D.: The small dispersion limit of the Korteweg de Vries equation, I,II,III. Comm. Pure Appl. Math. 36, 253–290, 571–593, 809–830 (1983)
- Lorenzoni P.: Deformations of bi-Hamiltonian structures of hydrodynamic type. J. Geom. Phys. 44(2-3), 331–375 (2002)
- Agranovich Z.S., Marchenko V.A.: The inverse problem of scattering theory, translated from the Russian by B.D. Seckler. Gordon and Breach Science Publishers, New York-London (1963)
- Menikoff A.: The existence of unbounded solutions of the Korteweg-de Vries equation. Commun. Pure Appl. Math. 25, 407–432 (1972)
- Moore G.: Geometry of the string equations. Commun. Math. Phys. 133(2), 261–304 (1990)
- Ramond T.: Semiclassical study of quantum scattering on the line. Commun. Math. Phys. 177(1), 221–254 (1996)
- Shabat, A.B.: One dimensional perturbations of a differential operator and the inverse scattering problem. In: Problems in Mechanics and Mathematical Physics, Moscow: Nauka, 1976
- Venakides S.: The Korteweg de Vries equations with small dispersion: higher order Lax-Levermore theory. Commun. Pure Appl. Math. 43, 335–361 (1990)
Bibliographic reference |
Claeys, Tom ; Grava, T. Universality of the Break-up Profile for the KdV Equation in the Small Dispersion Limit Using the Riemann-Hilbert Approach. In: Communications in Mathematical Physics, Vol. 286, no. 3, p. 979-1009 (2009) |
Permanent URL |
http://hdl.handle.net/2078.1/73372 |