User menu

Universality of the double scaling limit in random matrix models

Bibliographic reference Claeys, Tom ; Kuijlaars, ABJ. Universality of the double scaling limit in random matrix models . In: Communications on pure and applied mathematics, Vol. 59, no. 11, p. 1573-1603 (2006)
Permanent URL http://hdl.handle.net/2078.1/73337
  1. Akemann, Nuclear Phys B, 519, 682 (1998)
  2. Aptekarev, Comm Math Phys, 259, 367 (2005)
  3. Baik, J Amer Math Soc, 12, 1119 (1999)
  4. Baik, Geom Funct Anal, 10, 702 (2000)
  5. Baik, Comm Math Phys, 223, 627 (2001)
  6. Baik, J Statist Phys, 100, 523 (2000)
  7. Baik, Duke Math J, 109, 205 (2001)
  8. Bleher, J Phys A, 36, 3085 (2003)
  9. Bleher, Ann of Math (2), 150, 185 (1999)
  10. Bleher, Comm Pure Appl Math, 56, 433 (2003)
  11. M. Bleher Pavel, Its Alexander, Asymptotics of the partition function of a random matrix model, 10.5802/aif.2147
  12. Bleher, Comm Math Phys, 252, 43 (2004)
  13. Bleher, Int Math Res Not, 2004, 109 (2004)
  14. Buyarov, Sb Math, 190, 791 (1999)
  15. ; ; Multi-critical unitary random matrix ensembles and the general Painlevé II equation. arXiv: math-ph/0508062, 2005.
  16. Damelin, Trans Amer Math Soc, 351, 4561 (1999)
  17. Orthogonal polynomials and random matrices: a Riemann-Hilbert approach. Courant Lecture Notes in Mathematics, 3. American Mathematical Society, Providence, R.I., 1999.
  18. Deift, J Approx Theory, 95, 388 (1998)
  19. Deift, Comm Pure Appl Math, 52, 1491 (1999)
  20. Deift, Comm Pure Appl Math, 52, 1335 (1999)
  21. Deift, Internat Math Res Notices, 1997, 286 (1997)
  22. Deift, Ann of Math (2), 137, 295 (1993)
  23. Deift, Comm Pure Appl Math, 48, 277 (1995)
  24. Flaschka, Comm Math Phys, 76, 65 (1980)
  25. Fokas, Comm Math Phys, 142, 313 (1991)
  26. Fokas, Comm Math Phys, 147, 395 (1992)
  27. Boundary value problems. Pergamon Press, Oxford-New York-Paris; Addison-Wesley, Reading, Mass.-London, 1966.
  28. Hastings, Arch Rational Mech Anal, 73, 31 (1980)
  29. Its, Nonlinearity, 16, 363 (2003)
  30. Its Alexander R., Novokshenov Victor Yu., The Isomonodromic Deformation Method in the Theory of Painlevé Equations, ISBN:9783540164838, 10.1007/bfb0076661
  31. Riemann-Hilbert analysis for orthogonal polynomials. Orthogonal polynomials and special functions (Leuven, 2002), 167–210. Lecture Notes in Mathematics, 1817. Springer, Berlin, 2003.
  32. Kuijlaars, Comm Pure Appl Math, 53, 736 (2000)
  33. Kuijlaars, Comm Math Phys, 243, 163 (2003)
  34. Random matrices. 2nd edition. Academic Press, Boston, 1991.
  35. Ransford Thomas, Potential Theory in the Complex Plane, ISBN:9780511623776, 10.1017/cbo9780511623776
  36. Saff Edward B., Totik Vilmos, Logarithmic Potentials with External Fields, ISBN:9783642081736, 10.1007/978-3-662-03329-6
  37. Stahl Herbert, Totik Vilmos, General Orthogonal Polynomials : Encyclopedia of Mathematics and its Applications, ISBN:9780511759420, 10.1017/cbo9780511759420
  38. Totik Vilmos, Weighted Approximation with Varying Weight, ISBN:9783540577058, 10.1007/bfb0076133
  39. Tracy, Comm Math Phys, 161, 289 (1994)