User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

Halophyte improvement for a salinized world

  1. Achleitner Andreas, Tinker Nicholas A., Zechner Elisabeth, Buerstmayr Hermann, Genetic diversity among oat varieties of worldwide origin and associations of AFLP markers with quantitative traits, 10.1007/s00122-008-0843-y
  2. Ahmad S., Proceedings of the Indo-Pak Workshop on Soil Salinity and Water Management, 3 (1990)
  3. AKBAR Muhammad, YABUNO Tomosaburo, Breeding for Saline-resistant Varieties of Rice : IV. Inheritance of delayed-type panicle sterility induced by salinity, 10.1270/jsbbs1951.27.237
  4. Albert R., Ergebnisse weltweiter ökologischer Forschung, 69 (2000)
  5. Al-Doss Abdullah A., Smith S. E., Registration of AZ-97MEC and AZ-97MEC-ST Very Nondormant Alfalfa Germplasm Pools with Increased Shoot Weight and Differential Response to Saline Irrigation, 10.2135/cropsci1998.0011183x003800020095x
  6. Ali M. R., Bangladesh J. Bot., 36, 151 (2007)
  7. Allwood J., Physiol. Plant, 132, 117 (2008)
  8. William Allwood J., Ellis David I., Heald Jim K., Goodacre Royston, Mur Luis A. J., Metabolomic approaches reveal that phosphatidic and phosphatidyl glycerol phospholipids are major discriminatory non-polar metabolites in responses byBrachypodium distachyonto challenge byMagnaporthe grisea, 10.1111/j.1365-313x.2006.02692.x
  9. Al-Zahrani H. S., Indian J. Plant Physiol., 3, 32 (1998)
  10. Armengaud P., Sulpice R., Miller A. J., Stitt M., Amtmann A., Gibon Y., Multilevel Analysis of Primary Metabolism Provides New Insights into the Role of Potassium Nutrition for Glycolysis and Nitrogen Assimilation in Arabidopsis Roots, 10.1104/pp.108.133629
  11. Ashikari Motoyuki, Matsuoka Makoto, Identification, isolation and pyramiding of quantitative trait loci for rice breeding, 10.1016/j.tplants.2006.05.008
  12. Ashraf M., Wu Lin, Breeding for Salinity Tolerance in Plants, 10.1080/07352689409701906
  13. Ashraf M., Biotechnological approach of improving plant salt tolerance using antioxidants as markers, 10.1016/j.biotechadv.2008.09.003
  14. Ashraf Muhammad, Akram Nudrat Aisha, Improving salinity tolerance of plants through conventional breeding and genetic engineering: An analytical comparison, 10.1016/j.biotechadv.2009.05.026
  15. Ashraf M., O'leary J. W., Responses of Some Newly Developed Salt-tolerant Genotypes of Spring Wheat to Salt Stress: 1. Yield Components and Ion Distribution, 10.1111/j.1439-037x.1996.tb00451.x
  16. Ashraf M., Shahbaz M., Assessment of Genotypic Variation in Salt Tolerance of early CIMMYT Hexaploid Wheat Germplasm Using Photosynthetic Capacity and Water Relations as Selection Criteria, 10.1023/b:phot.0000011961.33120.b6
  17. Ashraf M., Athar H.R., Harris P.J.C., Kwon T.R., Some Prospective Strategies for Improving Crop Salt Tolerance, Advances in Agronomy (2008) ISBN:9780123743527 p.45-110, 10.1016/s0065-2113(07)00002-8
  18. Aslam Z., Plant Cell Environ., 9, 571 (1986)
  19. Ayers R. S., Water quality for agriculture (1976)
  20. Azhar F. M., McNeilly T., The Genetic Basis of Variation for Salt Tolerance in Sorghum bicolor (L.) Moench Seedlings, 10.1111/j.1439-0523.1988.tb00275.x
  21. Barloy Dominique, Lemoine Jocelyne, Abelard Paulette, Tanguy A. M., Rivoal Roger, Jahier Joseph, Marker-assisted pyramiding of two cereal cyst nematode resistance genes from Aegilops variabilis in wheat, 10.1007/s11032-006-9070-x
  22. Bell H. L., O'Leary J. W., Effects of salinity on growth and cation accumulation of Sporobolus virginicus (Poaceae), 10.3732/ajb.90.10.1416
  23. Benchimol Luciana Lasry, Souza Jr. Cláudio Lopes de, Souza Anete Pereira de, Microsatellite-assisted backcross selection in maize, 10.1590/s1415-47572005000500022
  24. Bennett John, Khush Gurdev S., Enhancing Salt Tolerance in Crops Through Molecular Breeding: A New Strategy, 10.1300/j144v07n01_02
  25. BLITS K. C., GALLAGHER J. L., Salinity tolerance of Kosteletzkya virginica. II. Root growth, lipid content, ion and water relations, 10.1111/j.1365-3040.1990.tb01318.x
  26. Bohnert Hans J, Shen Bo, Transformation and compatible solutes, 10.1016/s0304-4238(98)00195-2
  27. Bohnert Hans J, Gong Qingqiu, Li Pinghua, Ma Shisong, Unraveling abiotic stress tolerance mechanisms – getting genomics going, 10.1016/j.pbi.2006.01.003
  28. Bouchez A., Genetics, 162, 1945 (2002)
  29. Breckle Siegmar-W., Salinity tolerance of different halophyte types, Genetic Aspects of Plant Mineral Nutrition (1990) ISBN:9789401074216 p.167-175, 10.1007/978-94-009-2053-8_26
  30. Bretó M. P., Aśins M. J., Carbonell E. A., Salt tolerance in Lycopersicon species. III. Detection of quantitative trait loci by means of molecular markers, 10.1007/bf00223650
  31. Brosché Mikael, Vinocur Basia, Alatalo Edward R, Lamminmäki Airi, Teichmann Thomas, Ottow Eric A, Djilianov Dimitar, Afif Dany, Bogeat-Triboulot Marie-Béatrice, Altman Arie, Polle Andrea, Dreyer Erwin, Rudd Stephen, Paulin Lars, Auvinen Petri, Kangasjärvi Jaakko, 10.1186/gb-2005-6-12-r101
  32. Brown M. E., Funk C. C., Food Security Under Climate Change, 10.1126/science.1154102
  33. Carrari F., Baxter C., Usadel B., Urbanczyk-Wochniak E., Zanor M.-I., Nunes-Nesi A., Nikiforova V., Centero D., Ratzka A., Pauly M., Sweetlove L. J., Fernie A. R., Integrated Analysis of Metabolite and Transcript Levels Reveals the Metabolic Shifts That Underlie Tomato Fruit Development and Highlight Regulatory Aspects of Metabolic Network Behavior, 10.1104/pp.106.088534
  34. Carrow R. N., Salt-Affected Turfgrass Sites: Assessment and Management (1998)
  35. Catchpole G. S., Beckmann M., Enot D. P., Mondhe M., Zywicki B., Taylor J., Hardy N., Smith A., King R. D., Kell D. B., Fiehn O., Draper J., Hierarchical metabolomics demonstrates substantial compositional similarity between genetically modified and conventional potato crops, 10.1073/pnas.0503955102
  36. Chen Huatao, Cui Shiyou, Fu Sanxiong, Gai Junyi, Yu Deyue, Identification of quantitative trait loci associated with salt tolerance during seedling growth in soybean (Glycine maxL.), 10.1071/ar08104
  37. Cherian S., Reddy M. P., Ferreira R. B., Transgenic plants with improved dehydration-stress tolerance: Progress and future prospects, 10.1007/s10535-006-0141-y
  38. Chinnusamy Viswanathan, Jagendorf André, Zhu Jian-Kang, Understanding and Improving Salt Tolerance in Plants, 10.2135/cropsci2005.0437
  39. Collard B. C.Y, Mackill D. J, Marker-assisted selection: an approach for precision plant breeding in the twenty-first century, 10.1098/rstb.2007.2170
  40. Colmer Timothy D., Flowers Timothy J., Flooding tolerance in halophytes, 10.1111/j.1469-8137.2008.02483.x
  41. Cook D., Fowler S., Fiehn O., Thomashow M. F., From The Cover: A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis, 10.1073/pnas.0406069101
  42. Corney Helen J., Sasse Jenneth M., Ades Peter K., 10.1023/a:1024474813116
  43. Cramer Grant R., Ergül Ali, Grimplet Jerome, Tillett Richard L., Tattersall Elizabeth A. R., Bohlman Marlene C., Vincent Delphine, Sonderegger Justin, Evans Jason, Osborne Craig, Quilici David, Schlauch Karen A., Schooley David A., Cushman John C., Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles, 10.1007/s10142-006-0039-y
  44. Cuartero J., Increasing salt tolerance in the tomato, 10.1093/jxb/erj102
  45. CUARTERO J., YEO A. R., FLOWERS T. J., Selection of donors for salt-tolerance in tomato using physiological traits, 10.1111/j.1469-8137.1992.tb01093.x
  46. Curtin D., Steppuhn H., Selles F., Plant Responses to Sulfate and Chloride Salinity: Growth and Ionic Relations, 10.2136/sssaj1993.03615995005700050024x
  47. Daniells I. G., Holland J. F., Young R. R., Alston C. L., Bernardi A. L., 10.1071/ea00084
  48. Dasgan H. Y., J. Food Agric. Environ., 7, 363 (2009)
  49. Desbrosses G. G., Lotus japonicus Metabolic Profiling. Development of Gas Chromatography-Mass Spectrometry Resources for the Study of Plant-Microbe Interactions, 10.1104/pp.104.054957
  50. Dobrenz A. K., Salt-tolerant alfalfa. (1999)
  51. Dobrenz A. K., Robinson D. L., Smith S. E., Poteet D. C., Registration of AZ-Germ Salt-II Nondormant Alfalfa Germplasm, 10.2135/cropsci1989.0011183x002900020066x
  52. Duncan R.R., Carrow R.N., Turfgrass Molecular Genetic Improvement for Abiotic/Edaphic Stress Resistance, Advances in Agronomy (1999) ISBN:9780120007677 p.233-305, 10.1016/s0065-2113(08)60516-7
  53. El-Hendawy Salah E., Hu Yuncai, Schmidhalter Urs, Assessing the Suitability of Various Physiological Traits to Screen Wheat Genotypes for Salt Tolerance, 10.1111/j.1744-7909.2007.00533.x
  54. El-Hendawy Salah E., Hu Yuncai, Yakout Gamal M., Awad Ahmed M., Hafiz Salah E., Schmidhalter Urs, Evaluating salt tolerance of wheat genotypes using multiple parameters, 10.1016/j.eja.2004.03.002
  55. El-Hendawy S. E., Ruan Y., Hu Y., Schmidhalter U., A Comparison of Screening Criteria for Salt Tolerance in Wheat under Field and Controlled Environmental Conditions, 10.1111/j.1439-037x.2009.00372.x
  56. Fait Aaron, Fromm Hillel, Walter Dirk, Galili Gad, Fernie Alisdair R., Highway or byway: the metabolic role of the GABA shunt in plants, 10.1016/j.tplants.2007.10.005
  57. Farooq S., Azam F., Differences in behavior of salt tolerant and salt and water deficiency tolerant wheat genotypes when subjected to various salinity levels, 10.1556/crc.35.2007.1.8
  58. Fernie Alisdair R., Schauer Nicolas, Metabolomics-assisted breeding: a viable option for crop improvement?, 10.1016/j.tig.2008.10.010
  59. Fernie Alisdair R., Trethewey Richard N., Krotzky Arno J., Willmitzer Lothar, Innovation: Metabolite profiling: from diagnostics to systems biology, 10.1038/nrm1451
  60. Fiehn Oliver, Combining Genomics, Metabolome Analysis, and Biochemical Modelling to Understand Metabolic Networks, 10.1002/cfg.82
  61. Fiehn Oliver, Sumner Lloyd W., Rhee Seung Y., Ward Jane, Dickerson Julie, Lange Bernd Markus, Lane Geoff, Roessner Ute, Last Robert, Nikolau Basil, Minimum reporting standards for plant biology context information in metabolomic studies, 10.1007/s11306-007-0068-0
  62. Flowers T. J., Improving crop salt tolerance, 10.1093/jxb/erh003
  63. Flowers T.J., Flowers S.A., Why does salinity pose such a difficult problem for plant breeders?, 10.1016/j.agwat.2005.04.015
  64. Flowers T. J., Physiology of halophytes, 10.1007/bf02182232
  65. Flowers Timothy J., Colmer Timothy D., Salinity tolerance in halophytes*, 10.1111/j.1469-8137.2008.02531.x
  66. Flowers T. J., Dalmond D., Protein synthesis in halophytes: The influence of potassium, sodium and magnesium in vitro, 10.1007/bf00012008
  67. Flowers Timothy John, Garcia Aurora, Koyama Mikiko, Yeo Anthony Richard, Breeding for salt tolerance in crop plants — the role of molecular biology, 10.1007/s11738-997-0039-0
  68. Flowers T J, Troke P F, Yeo A R, The Mechanism of Salt Tolerance in Halophytes, 10.1146/annurev.pp.28.060177.000513
  69. Flowers TJ, Yeo AR, Breeding for Salinity Resistance in Crop Plants: Where Next?, 10.1071/pp9950875
  70. Foolad M.R., Comparison of salt tolerance during seed germination and vegetative growth in tomato by QTL mapping, 10.1139/gen-42-4-727
  71. Foolad M. R., Chen F. Q., RFLP mapping of QTLs conferring salt tolerance during the vegetative stage in tomato, 10.1007/s001220051229
  72. Foolad M. R., Chen F. Q., Lin G. Y., RFLP mapping of QTLs conferring salt tolerance during germination in an interspecific cross of tomato, 10.1007/s001220051002
  73. Foolad M. R., Lin G. Y., Absence of a genetic relationship between salt tolerance during seed germination and vegetative growth in tomato, 10.1111/j.1439-0523.1997.tb01013.x
  74. Foolad M. R., Lin G. Y., Chen F. Q., Comparison of QTLs for seed germination under non-stress, cold stress and salt stress in tomato, 10.1046/j.1439-0523.1999.118002167.x
  75. Foolad M. R., Stoltz T., Dervinis C., Rodriguez R. L., Jones R. A., 10.1023/a:1009668325331
  76. Foolad M. R., Int. J. Plant Genomics, 2007, 973 (2007)
  77. Francois L. E., Handbook of Plant and Crop Stress, 149 (1994)
  78. Fumagalli E., Baldoni E., Abbruscato P., Piffanelli P., Genga A., Lamanna R., Consonni R., NMR Techniques Coupled with Multivariate Statistical Analysis: Tools to AnalyseOryza sativaMetabolic Content under Stress Conditions, 10.1111/j.1439-037x.2008.00344.x
  79. Gagneul D., Ainouche A., Duhaze C., Lugan R., Larher F. R., Bouchereau A., A Reassessment of the Function of the So-Called Compatible Solutes in the Halophytic Plumbaginaceae Limonium latifolium, 10.1104/pp.107.099820
  80. Gale J, Naaman R, Poljakoff-Mayber A, Growth of Atriplex Halimus L. in Sodium Chloride Salinated Culture Solutions as Affected by The Relative Humidity of the Air, 10.1071/bi9700947
  81. Gallagher John L., Halophytic crops for cultivation at seawater salinity, 10.1007/bf02182251
  82. Glenn Edward P., Brown J. Jed, Blumwald Eduardo, Salt Tolerance and Crop Potential of Halophytes, 10.1080/07352689991309207
  83. Glenn E. P., Plant Cell Environ, 10, 205 (1987)
  84. Glenn Edward P., Jed Brown J., O'Leary James W., Irrigating Crops with Seawater, 10.1038/scientificamerican0898-76
  85. Glenn Edward P., Hodges Carl N., Lieth Helmut, Pielke Roger, Pitelka Louis, Climate: Growing Halophytes to Remove Carbon from the Atmosphere, 10.1080/00139157.1992.9931438
  86. Glenn E. P., J. Arid Environ., 9, 81 (1985)
  87. Glenn Edward P., Pitelka Louis F., Olsen Mary W., The use of halophytes to sequester carbon, 10.1007/bf00477105
  88. GLENN E. P., WATSON M. C., O'LEARY J. W., AXELSON R. D., Comparison of salt tolerance and osmotic adjustment of low-sodium and high-sodium subspecies of the C4 halophyte, Atriplex canescens, 10.1111/j.1365-3040.1992.tb01013.x
  89. Gong Jiming, He Ping, Qian Qian, Shen Lishuang, Zhu Lihuang, Chen Shouyi, Identification of salt-tolerance QTL in rice (Oryza sativa L.), 10.1007/bf03182889
  90. Gong Jiming, Zheng Xianwu, Du Baoxing, Qian Qian, Chen Shouyi, Zhu Lihuang, He Ping, Comparative study of QTLs for agronomic traits of riceOriza sativa L.) between salt stress and nonstress environment, 10.1007/bf02882075
  91. Gong Qingqiu, Li Pinghua, Ma Shisong, Indu Rupassara S., Bohnert Hans J., Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana : Salinity stress adaptation in T. halophila, 10.1111/j.1365-313x.2005.02587.x
  92. Greenway H., Osmond C. B., Salt Responses of Enzymes from Species Differing in Salt Tolerance, 10.1104/pp.49.2.256
  93. Greenway H, Munns R, Mechanisms of Salt Tolerance in Nonhalophytes, 10.1146/annurev.pp.31.060180.001053
  94. Groppa M. D., Benavides M. P., Polyamines and abiotic stress: recent advances, 10.1007/s00726-007-0501-8
  95. Guy C., Physiol. Plant, 132, 220 (2008)
  96. Guy Charles, Kopka Joachim, Moritz Thomas, Plant metabolomics coming of age, 10.1111/j.1399-3054.2007.01020.x
  97. Hagel Jillian M., Facchini Peter J., Plant metabolomics: analytical platforms and integration with functional genomics, 10.1007/s11101-007-9086-9
  98. Hall R. D., Physiol. Plant, 132, 162 (2008)
  99. Hamrouni Lamia, Abdallah Ferjani Ben, Abdelly Chédly, Ghorbel Abdelwahed, La culture in vitro : un moyen rapide et efficace pour sélectionner des génotypes de vigne tolérant la salinité, 10.1016/j.crvi.2007.11.002
  100. Hamwieh Aladdin, Xu Donghe, Conserved salt tolerance quantitative trait locus (QTL) in wild and cultivated soybeans, 10.1270/jsbbs.58.355
  101. Hansen Bjarne G., Halkier Barbara A., Kliebenstein Daniel J., Identifying the molecular basis of QTLs: eQTLs add a new dimension, 10.1016/j.tplants.2007.11.008
  102. Harrigan George G., Martino-Catt Susan, Glenn Kevin C., Metabolomics, metabolic diversity and genetic variation in crops, 10.1007/s11306-007-0076-0
  103. Harrigan George G., Stork LeAnna G., Riordan Susan G., Reynolds Tracey L., Ridley William P., Masucci James D., MacIsaac Susan, Halls Steven C., Orth Robert, Smith Ronald G., Wen Li, Brown Wayne E., Welsch Michael, Riley Rochelle, McFarland David, Pandravada Anand, Glenn Kevin C., Impact of Genetics and Environment on Nutritional and Metabolite Components of Maize Grain, 10.1021/jf070494k
  104. Hefny M., Improving Crop Efficiency, 25 (2009)
  105. Hester Mark W., Mendelssohn Irving A., McKee Karen L., Intraspecific Variation in Salt Tolerance and Morphology in the Coastal Grass Spartina patens (Poaceae), 10.2307/2445827
  106. Hollington P. A., Proceedings of the National Conference ‘Salinity Management in Agriculture’, 273 (2000)
  107. Hospital Frédéric, Challenges for effective marker-assisted selection in plants, 10.1007/s10709-008-9307-1
  108. Huang S., Spielmeyer W., Lagudah E. S., James R. A., Platten J. D., Dennis E. S., Munns R., A Sodium Transporter (HKT7) Is a Candidate for Nax1, a Gene for Salt Tolerance in Durum Wheat, 10.1104/pp.106.088864
  109. Igartua E., Choice of selection environment for improving crop yields in saline areas, 10.1007/bf00223914
  110. Inal A., Turk. J. Bot., 26, 285 (2002)
  111. International Service for the Acquisition of Agri-biotech Applications (2006)
  112. Isla R., Aragüés R., Royo A., Validity of various physiological traits as screening criteria for salt tolerance in barley, 10.1016/s0378-4290(98)00088-4
  113. Jacobsen T., Adams R. M., Salt and Silt in Ancient Mesopotamian Agriculture: Progressive changes in soil salinity and sedimentation contributed to the breakup of past civilizations, 10.1126/science.128.3334.1251
  114. Jannink Jean-Luc, Moreau Laurence, Charmet Gilles, Charcosset Alain, Overview of QTL detection in plants and tests for synergistic epistatic interactions, 10.1007/s10709-008-9306-2
  115. Jithesh M. N., Prashanth S. R., Sivaprakash K. R., Parida Ajay K., Antioxidative response mechanisms in halophytes: Their role in stress defence, 10.1007/bf02935340
  116. Johnson D. W., Smith S. E., Dobrenz A. K., Registration of AZ-90NDC-ST Nondormant Alfalfa Germplasm with Improved Forage Yield in Saline Environments, 10.2135/cropsci1991.0011183x003100040076x
  117. Johnson Helen E., Broadhurst David, Goodacre Royston, Smith Aileen R., Metabolic fingerprinting of salt-stressed tomatoes, 10.1016/s0031-9422(02)00722-7
  118. Kafi Mohammad, Asadi Hajar, Ganjeali Ali, Possible utilization of high-salinity waters and application of low amounts of water for production of the halophyte Kochia scoparia as alternative fodder in saline agroecosystems, 10.1016/j.agwat.2009.08.022
  119. Kar Prasanta K., Srivastava Prem P., Awasthi Arvind K., Urs S. Raje, Genetic variability and association of ISSR markers with some biochemical traits in mulberry (Morus spp.) genetic resources available in India, 10.1007/s11295-007-0089-x
  120. Keurentjes J. J., Genome Biol., 129, 1 (2008)
  121. Keurentjes Joost J B, Fu Jingyuan, de Vos C H Ric, Lommen Arjen, Hall Robert D, Bino Raoul J, van der Plas Linus H W, Jansen Ritsert C, Vreugdenhil Dick, Koornneef Maarten, The genetics of plant metabolism, 10.1038/ng1815
  122. Khan M.A., Duke N.C., 10.1023/a:1012211726748
  123. KHATUN S., FLOWERS T. J., Effects of salinity on seed set in rice, 10.1111/j.1365-3040.1995.tb00544.x
  124. Kim Jae Kwang, Bamba Takeshi, Harada Kazuo, Fukusaki Eiichiro, Kobayashi Akio, Time-course metabolic profiling in Arabidopsis thaliana cell cultures after salt stress treatment*, 10.1093/jxb/erl216
  125. Kliebenstein DanielJ., Advancing Genetic Theory and Application by Metabolic Quantitative Trait Loci Analysis, 10.1105/tpc.109.067611
  126. Kliebenstein D. J., Genetics, 159, 359 (2001)
  127. Knothe Gerhard, Steidley Kevin R., Kinematic viscosity of biodiesel components (fatty acid alkyl esters) and related compounds at low temperatures, 10.1016/j.fuel.2007.02.006
  128. Koyama M. L., Quantitative Trait Loci for Component Physiological Traits Determining Salt Tolerance in Rice, 10.1104/pp.125.1.406
  129. Kreeb Karlheinz, Pflanzen an Salzstandorten, 10.1007/bf00600299
  130. Last Robert L., Jones A. Daniel, Shachar-Hill Yair, Towards the plant metabolome and beyond, 10.1038/nrm2098
  131. Laurentin Hernán, Ratzinger Astrid, Karlovsky Petr, Relationship between metabolic and genomic diversity in sesame (Sesamum indicum L.), 10.1186/1471-2164-9-250
  132. Lee G. J., Comparative salinity tolerance and salt tolerance mechanisms of seashore paspalums ecotypes (2000)
  133. Lee Geungjoo, Carrow Robert N., Duncan Ronny R., Criteria for Assessing Salinity Tolerance of the Halophytic Turfgrass Seashore Paspalum, 10.2135/cropsci2005.0251
  134. Lee G. J., Boerma H. R., Villagarcia M. R., Zhou X., Carter T. E., Li Z., Gibbs M. O., A major QTL conditioning salt tolerance in S-100 soybean and descendent cultivars, 10.1007/s00122-004-1783-9
  135. Gustafson Perry, Li He,  Ruan Cheng-Jiang, Teixeira da Silva Jaime A., Liu Bao-Quan, Associations of SRAP markers with dried-shrink disease resistance in a germplasm collection of sea buckthorn (HippophaeL.), 10.1139/g10-020
  136. Lin H. X., Zhu M. Z., Yano M., Gao J. P., Liang Z. W., Su W. A., Hu X. H., Ren Z. H., Chao D. Y., QTLs for Na + and K + uptake of the shoots and roots controlling rice salt tolerance, 10.1007/s00122-003-1421-y
  137. Lisec Jan, Meyer Rhonda C., Steinfath Matthias, Redestig Henning, Becher Martina, Witucka-Wall Hanna, Fiehn Oliver, Törjék Ottó, Selbig Joachim, Altmann Thomas, Willmitzer Lothar, Identification of metabolic and biomass QTL in Arabidopsis thaliana in a parallel analysis of RIL and IL populations : Metabolic and biomass QTL in Arabidopsis, 10.1111/j.1365-313x.2007.03383.x
  138. Lovelock C. E., Salinity: Environment–Plant–Molecules, 315 (2002)
  139. Lutts S., Int. Rice Res. Notes, 25, 39 (2000)
  140. Lutts Stanley, Almansouri Malika, Kinet Jean-Marie, Salinity and water stress have contrasting effects on the relationship between growth and cell viability during and after stress exposure in durum wheat callus, 10.1016/j.plantsci.2004.02.014
  141. Lutts S., Kinet J.M., Bouharmont J., Changes in plant response to NaCl during development of rice (Oryza sativaL.) varieties differing in salinity resistance, 10.1093/jxb/46.12.1843
  142. Lutts Stanley, Kinet Jean-Marie, Bouharmont Jules, Ethylene production by leaves of rice (Oryza sativa L.) in relation to salinity tolerance and exogenous putrescine application, 10.1016/0168-9452(96)04379-8
  143. LUTTS S, NaCl-induced Senescence in Leaves of Rice (Oryza sativaL.) Cultivars Differing in Salinity Resistance, 10.1006/anbo.1996.0134
  144. Lyon C. B., Responses of Two Species of Tomatoes and the F1Generation to Sodium Sulphate in the Nutrient Medium, 10.1086/335027
  145. Maas E. V., Proc. of the Workshop on Adaptation of Plants to Soil Stresses INSTSORMIL Pub. No. 94–2, 234 (1994)
  146. Mahar A. R., Cereal Res. Commun., 31, 81 (2003)
  147. Mahar A. R., Pak. J. Bot., 35, 865 (2003)
  148. Malik J., Agr. Biol. Res., 16, 5 (2000)
  149. Mano Yoshiro, Takeda Kazuyoshi, 10.1023/a:1002968207362
  150. Marcum K. B., Handbook of Plant and Crop Physiology, 623 (2002)
  151. Mardis Elaine R., The impact of next-generation sequencing technology on genetics, 10.1016/j.tig.2007.12.007
  152. Martiniello P., European J. Plant Sci. Biotech., 4 (2010)
  153. Masters David G., Benes Sharon E., Norman Hayley C., Biosaline agriculture for forage and livestock production, 10.1016/j.agee.2006.08.003
  154. Mathieu Sandrine, Cin Valeriano Dal, Fei Zhangjun, Li Hua, Bliss Peter, Taylor Mark G., Klee Harry J., Tieman Denise M., Flavour compounds in tomato fruits: identification of loci and potential pathways affecting volatile composition, 10.1093/jxb/ern294
  155. Maureira-Butler I. J., Udall J. A., Osborn T. C., Analyses of a multi-parent population derived from two diverse alfalfa germplasms: testcross evaluations and phenotype–DNA associations, 10.1007/s00122-007-0614-1
  156. Megdiche Wided, Amor Nader Ben, Debez Ahmed, Hessini Kamel, Ksouri Riadh, Zuily-Fodil Yasmine, Abdelly Chedly, Salt tolerance of the annual halophyte Cakile maritima as affected by the provenance and the developmental stage, 10.1007/s11738-007-0047-0
  157. Meyer R. C., Steinfath M., Lisec J., Becher M., Witucka-Wall H., Torjek O., Fiehn O., Eckardt A., Willmitzer L., Selbig J., Altmann T., The metabolic signature related to high plant growth rate in Arabidopsis thaliana, 10.1073/pnas.0609709104
  158. Mishra R. K., Curr. Sci., 87, 60 (2004)
  159. Mohammadi-Nejad G., Afr. J. Biotechnol., 7, 730 (2008)
  160. Monforte A. J., Asíns M. J., Carbonell E. A., Salt tolerance in Lycopersicon species., 10.1007/s001220050561
  161. Monforte A. J., Asíns M. J., Carbonell E. A., Salt tolerance in Lycopersicon species VI. Genotype-by-salinity interaction in quantitative trait loci detection: constitutive and response QTLs, 10.1007/s001220050616
  162. Morreel Kris, Goeminne Geert, Storme Véronique, Sterck Lieven, Ralph John, Coppieters Wouter, Breyne Peter, Steenackers Marijke, Georges Michel, Messens Eric, Boerjan Wout, Genetical metabolomics of flavonoid biosynthesis inPopulus: a case study, 10.1111/j.1365-313x.2006.02786.x
  163. Morrison Norman, Bearden Dan, Bundy Jacob G., Collette Tim, Currie Felicity, Davey Matthew P., Haigh Nathan S., Hancock David, Jones Oliver A. H., Rochfort Simone, Sansone Susanna-Assunta, Štys Dalibor, Teng Quincy, Field Dawn, Viant Mark R., Standard reporting requirements for biological samples in metabolomics experiments: environmental context, 10.1007/s11306-007-0067-1
  164. Munns Rana, Genes and salt tolerance: bringing them together : Tansley review, 10.1111/j.1469-8137.2005.01487.x
  165. Munns Rana, James Richard A., Screening methods for salinity tolerance: a case study with tetraploid wheat, 10.1023/a:1024553303144
  166. NAIDOO G., RUGHUNANAN R, Salt Tolerance in the Succulent, Coastal Halophyte,Sarcocornia natalensis, 10.1093/jxb/41.4.497
  167. Nikiforova V. J., Physiol Plant, 132, 190 (2008)
  168. Noble C. L., Rogers M. E., Arguments for the use of physiological criteria for improving the salt tolerance in crops, 10.1007/bf00012001
  169. Obert D.E., Skinner D.Z., Stuteville D.L., 10.1023/a:1009672008702
  170. Oikawa Akira, Matsuda Fumio, Kusano Miyako, Okazaki Yozo, Saito Kazuki, Rice Metabolomics, 10.1007/s12284-008-9009-4
  171. O'Leary J. W., Handbook of Plant and Crop Physiology, 577 (1995)
  172. Poehlman John Milton, Breeding Field Crops, ISBN:9789401572736, 10.1007/978-94-015-7271-2
  173. Poljakoff-Mayber A., Somers G. F., Werker E., Gallagher J. L., Seeds of Kosteletzkya virginica (Malvaceae): Their Structure, Germination, and Salt Tolerance. II. Germination and Salt Tolerance, 10.2307/2445562
  174. Prasad S. R., Curr. Sci., 78, 162 (2000)
  175. Quesada V., Genetic Architecture of NaCl Tolerance in Arabidopsis, 10.1104/pp.006536
  176. Rashid Umer, Anwar Farooq, Moser Bryan R., Ashraf Samia, Production of sunflower oil methyl esters by optimized alkali-catalyzed methanolysis, 10.1016/j.biombioe.2008.03.001
  177. Ren Zhong-Hai, Gao Ji-Ping, Li Le-Gong, Cai Xiu-Ling, Huang Wei, Chao Dai-Yin, Zhu Mei-Zhen, Wang Zong-Yang, Luan Sheng, Lin Hong-Xuan, A rice quantitative trait locus for salt tolerance encodes a sodium transporter, 10.1038/ng1643
  178. Renault Hugues, Roussel Valérie, El Amrani Abdelhak, Arzel Matthieu, Renault David, Bouchereau Alain, Deleu Carole, The Arabidopsis pop2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance, 10.1186/1471-2229-10-20
  179. Richards R. A., Should selection for yield in saline regions be made on saline or non-saline soils?, 10.1007/bf00021452
  180. Roessner U., Patterson J. H., Forbes M. G., Fincher G. B., Langridge P., Bacic A., An Investigation of Boron Toxicity in Barley Using Metabolomics, 10.1104/pp.106.084053
  181. Rogers M.E., Grieve C.M., Shannon M.C., 10.1023/a:1004317513474
  182. Rosegrant M. W., Global Food Security: Challenges and Policies, 10.1126/science.1092958
  183. Rowe H. C., Hansen B. G., Halkier B. A., Kliebenstein D. J., Biochemical Networks and Epistasis Shape the Arabidopsis thaliana Metabolome, 10.1105/tpc.108.058131
  184. ROWLAND G. G., McHUGHEN A., McONIE C., FIELD PERFORMANCE AT SALINE-AFFECTED SITES OF A SOMACLONAL VARIANT OF McGREGOR FLAX SELECTED FOR SALT TOLERANCE IN VITRO, 10.4141/cjps89-007
  185. Roy J. K., Curr. Sci., 90, 683 (2006)
  186. Rozema Jelte, Growth, water and ion relationships of halophytic monocotyledonae and dicotyledonae; a unified concept, 10.1016/0304-3770(91)90019-2
  187. Rozema J., Flowers T., ECOLOGY: Crops for a Salinized World, 10.1126/science.1168572
  188. Ruan C. J., Chin. Bull. Bot., 20, 10 (2003)
  189. Ruan Cheng-Jiang, Li He, Mopper Susan, Characterization and identification of ISSR markers associated with resistance to dried-shrink disease in sea buckthorn, 10.1007/s11032-009-9288-5
  190. Ruan C.-J., Li H., Guo Y.-Q., Qin P., Gallagher J.L., Seliskar D.M., Lutts S., Mahy G., Kosteletzkya virginica, an agroecoengineering halophytic species for alternative agricultural production in China's east coast: Ecological adaptation and benefits, seed yield, oil content, fatty acid and biodiesel properties, 10.1016/j.ecoleng.2007.12.010
  191. Ruan C. J., Qin P., He Z. X., Xie M., Concentrations of Major and Minor Mineral Elements in Different Organs ofKosteletzkya virginicaand Saline Soils, 10.1081/pln-200063228
  192. Rueda-Puente E., Castellanos T., Troyo-Dieguez E., Diaz de Leon-Alvarez J. L., Murillo-Amador B., Effects of a Nitrogen-Fixing Indigenous Bacterium (Klebsiella pneumoniae) on the Growth and Development of the Halophyte Salicornia bigelovii as a New Crop for Saline Environments, 10.1046/j.1439-037x.2003.00051.x
  193. Sabir P., Pak. J. Bot., 39, 1655 (2007)
  194. Plant Metabolomics, ISBN:9783540297819, 10.1007/3-540-29782-0
  195. Sanchez Diego H., Redestig Henning, Krämer Ute, Udvardi Michael K., Kopka Joachim, Metabolome-ionome-biomass interactions : What can we learn about salt stress by multiparallel phenotyping?, 10.4161/psb.3.8.6347
  196. Sanchez D. H., Physiol. Plantarum, 132, 209 (2008)
  197. Sauter H., Abstr. Pap. Am. Chem. S., 195, 129 (1988)
  198. SCHAUER N, FERNIE A, Plant metabolomics: towards biological function and mechanism, 10.1016/j.tplants.2006.08.007
  199. Schauer N., Semel Y., Balbo I., Steinfath M., Repsilber D., Selbig J., Pleban T., Zamir D., Fernie A. R., Mode of Inheritance of Primary Metabolic Traits in Tomato, 10.1105/tpc.107.056523
  200. Schmidhuber J., Tubiello F. N., Global food security under climate change, 10.1073/pnas.0701976104
  201. Schubert Sven, Neubert Anja, Schierholt Antje, Sümer Ali, Zörb Christian, Development of salt-resistant maize hybrids: The combination of physiological strategies using conventional breeding methods, 10.1016/j.plantsci.2009.05.011
  202. Senadhira D., Zapata-Arias F.J., Gregorio G.B., Alejar M.S., de la Cruz H.C., Padolina T.F., Galvez A.M., Development of the first salt-tolerant rice cultivar through indica/indica anther culture, 10.1016/s0378-4290(02)00032-1
  203. Sengupta Sonali, Majumder Arun Lahiri, Insight into the salt tolerance factors of a wild halophytic rice, Porteresia coarctata: a physiological and proteomic approach, 10.1007/s00425-008-0878-y
  204. Appels R., Shalini K.V., Manjunatha S., Lebrun P., Berger A., Baudouin L., Pirany N., Ranganath R.M., Prasad D. Theertha, Identification of molecular markers associated with mite resistance in coconut (Cocos nucifera L.), 10.1139/g06-136
  205. Shannon M. C., Proc of the Workshop on Adaptation of Plants to Soil Stresses. INSTSORMIL Pub. No. 94–2, 117 (1994)
  206. Shannon M. C., Agricultural Salinity Assessment and Management, 71, 161 (1990)
  207. Shannon M. C., Plant-Environment Interactions, 199 (1994)
  208. Shen B., Zhongguo Shuidao Kexue, 23, 319 (2009)
  209. SHORT D, Salt Tolerance in the HalophyteHalosarcia pergranulatasubsp.pergranulata, 10.1006/anbo.1998.0812
  210. Shulaev Vladimir, Cortes Diego, Miller Gad, Mittler Ron, Metabolomics for plant stress response, 10.1111/j.1399-3054.2007.01025.x
  211. Siddiqi E. H., Pak. J. Bot., 40, 221 (2008)
  212. Siddiqi E. H., Pak. J. Bot., 41, 2251 (2009)
  213. Sixto H., Aranda I., Grau J. M., Assessment of salt tolerance in Populus alba clones using chlorophyll fluorescence, 10.1007/s11099-006-0002-0
  214. Song Xian-Jun, Huang Wei, Shi Min, Zhu Mei-Zhen, Lin Hong-Xuan, A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase, 10.1038/ng2014
  215. Steele K. A., Price A. H., Shashidhar H. E., Witcombe J. R., Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety, 10.1007/s00122-005-0110-4
  216. Steinfath Matthias, Groth Detlef, Lisec Jan, Selbig Joachim, Metabolite profile analysis: from raw data to regression and classification, 10.1111/j.1399-3054.2007.01006.x
  217. Stocking M. A., Tropical Soils and Food Security: The Next 50 Years, 10.1126/science.1088579
  218. Subbarao G. V., Handbook of Plant and Crop Stress, 559 (1994)
  219. Subbarao G. V., Johansen C., Rao J. V. D. K. Kumar, Jana M. K., Salinity Tolerance in F1 Hybrids of Pigeonpea and a Tolerant Wild Relative, 10.2135/cropsci1990.0011183x003000040005x
  220. Sumner Lloyd W, Mendes Pedro, Dixon Richard A, Plant metabolomics: large-scale phytochemistry in the functional genomics era, 10.1016/s0031-9422(02)00708-2
  221. Takeda Shin, Matsuoka Makoto, Genetic approaches to crop improvement: responding to environmental and population changes, 10.1038/nrg2342
  222. Tal M, Shannon MC, Salt Tolerance in the Wild Relatives of the Cultivated Tomato: Responses ofLycopersicon esculentum, L. cheesmanii, L. peruvianum, Solanum pennelliiand F1Hybrids to High Salinity, 10.1071/pp9830109
  223. Teixeira da Silva Jaime A, Chrysanthemum: advances in tissue culture, cryopreservation, postharvest technology, genetics and transgenic biotechnology, 10.1016/s0734-9750(03)00117-4
  224. Teixeira, d a and Silva, J. A. 2006.Floriculture, Ornamental and Plant Biotechnology: Advances and Topial Issues, Vol I-IV, 2551Isleworth, UK: Global Science Books, Ltd.
  225. THOMAS W T B, Prospects for molecular breeding of barley, 10.1111/j.1744-7348.2003.tb00223.x
  226. Tieman D. M., Identification of loci affecting flavour volatile emissions in tomato fruits, 10.1093/jxb/erj074
  227. Tikader A., Bioremediation, Biodiversity Bioavailability, 4, 15 (2010)
  228. Tikunov Y., A Novel Approach for Nontargeted Data Analysis for Metabolomics. Large-Scale Profiling of Tomato Fruit Volatiles, 10.1104/pp.105.068130
  229. Touchette Brant W., Seagrass-salinity interactions: Physiological mechanisms used by submersed marine angiosperms for a life at sea, 10.1016/j.jembe.2007.05.037
  230. Tozlu Ilhami, Guy Charles L., Moore Gloria A., QTL analysis of morphological traits in an intergeneric BC1 progeny of Citrus and Poncirus under saline and non-saline environments, 10.1139/gen-42-5-1020
  231. Tozlu Ilhami, Guy Charles L., Moore Gloria A., QTL analysis of Na+ and Cl- accumulation related traits in an intergeneric BC1 progeny of Citrus and Poncirus under saline and nonsaline environments, 10.1139/gen-42-4-692
  232. Tozlu I., Guy C.L., Moore G.A., QTL ANALYSIS OF SALT STRESS RELATED TRAITS IN CITRUS AND RELATED GENUS PONCIRUS, 10.17660/actahortic.2002.573.27
  233. Uddin M. I., Sabrao J. Breed. Genet., 39, 89 (2007)
  234. Ulfat M., Pak. J. Bot., 39, 1593 (2007)
  235. Ungar I. A., Ecophysiology of vascular plants (1991)
  236. Vijayan K., Srivatsava P. P., Nair C. V., Awasthi A. K., Tikader A., Sreenivasa B., Urs S. R., Molecular characterization and identification of markers associated with yield traits in mulberry using ISSR markers, 10.1111/j.1439-0523.2006.01212.x
  237. Villalta I., Bernet G. P., Carbonell E. A., Asins M. J., Comparative QTL analysis of salinity tolerance in terms of fruit yield using two solanum populations of F7 lines, 10.1007/s00122-006-0494-9
  238. Vinocur Basia, Altman Arie, Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations, 10.1016/j.copbio.2005.02.001
  239. Virk Parminder S, Ford-Lloyd Brian V, Jackson Michael T, Pooni Harpal S, Clemeno Tomas P, Newbury H John, Predicting quantitative variation within rice germplasm using molecular markers, 10.1038/hdy.1996.43
  240. Vorst O., Vos C. H. R. de, Lommen A., Staps R. V., Visser R. G. F., Bino R. J., Hall R. D., A non-directed approach to the differential analysis of multiple LC–MS-derived metabolic profiles, 10.1007/s11306-005-4432-7
  241. Wang Dan, Wei Zhi-gang, Yang Chuan-ping, Liu Guan-jun, Analysis and identification of SCAR molecular markers associated with birch fiber length trait, 10.1007/s11676-008-0051-2
  242. Wang Junping, Drayton Michelle C., George Julie, Cogan Noel O. I., Baillie Rebecca C., Hand Melanie L., Kearney Gavin A., Erb Stacey, Wilkinson Tania, Bannan Nathaniel R., Forster John W., Smith Kevin F., Identification of genetic factors influencing salt stress tolerance in white clover (Trifolium repens L.) by QTL analysis, 10.1007/s00122-009-1179-y
  243. Wang Y. Q., Study on Betula platyphylla long fiber trait by SSR marker technology (2007)
  244. Ward Jane L., Baker John M., Beale Michael H., Recent applications of NMR spectroscopy in plant metabolomics : NMR spectroscopy in plant metabolomics, 10.1111/j.1742-4658.2007.05675.x
  245. Weckwerth Wolfram, Integration of metabolomics and proteomics in molecular plant physiology - coping with the complexity by data-dimensionality reduction, 10.1111/j.1399-3054.2007.01011.x
  246. Widodo, Patterson John H., Newbigin Ed, Tester Mark, Bacic Antony, Roessner Ute, Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance, 10.1093/jxb/erp243
  247. Wu Wei, Zhang Qing, Zhu Yanming, Lam Hon-Ming, Cai Zongwei, Guo Dianjing, Comparative Metabolic Profiling Reveals Secondary Metabolites Correlated with Soybean Salt Tolerance, 10.1021/jf8024024
  248. Xia D. A., J. Northeast Forst. Univ., 39, 1 (2008)
  249. Xue Zhe-Yong, Zhi Da-Ying, Xue Gang-Ping, Zhang Hui, Zhao Yan-Xiu, Xia Guang-Min, Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+, 10.1016/j.plantsci.2004.05.034
  250. Dong Yanjun, Zhang Junzhi, Xiao Ke, Zhang Yongjuan, Xu Jianlong, Li Zhikang, Luo Lijun, Matsuo M., Quantitative Trait Loci Analysis for Plant Morphological Traits in Rice (Oryza sativa L.) Under Different Environments, 10.3923/ijpbg.2008.1.8
  251. Ye G.-Y., Int. J. Plant Breeding, 2, 11 (2008)
  252. Yeo A, Review article. Molecular biology of salt tolerance in the context of whole-plant physiology, 10.1093/jexbot/49.323.915
  253. YEO A. R., FLOWERS T. J., Salt Tolerance in the HalophyteSuaeda maritimaL. Dum.: Evaluation of the Effect of Salinity upon Growth, 10.1093/jxb/31.4.1171
  254. Yeo A.R., Flowers T.J., Selection for physiological characters – examples from breeding for salt tolerance, Plants under Stress ISBN:9780511661587 p.217-234, 10.1017/cbo9780511661587.013
  255. Zanor Maria Inés, Rambla José-Luis, Chaïb Jamila, Steppa Agnes, Medina Aurora, Granell Antonio, Fernie Alisdair R., Causse Mathilde, Metabolic characterization of loci affecting sensory attributes in tomato allows an assessment of the influence of the levels of primary metabolites and volatile organic contents, 10.1093/jxb/erp086
  256. Zeng L., Shannon M.C., Grieve C.M., 10.1023/a:1020262932277
  257. Zeng Linghe, Poss James A., Wilson Clyde, Draz Abdel-Salam E., Gregorio Glenn B., Grieve Catherine M., 10.1023/a:1022248522536
  258. Zerai Desale B., Glenn Edward P., Chatervedi Rahul, Lu Zhongjin, Mamood Amed N., Nelson Stephen G., Ray Dennis T., Potential for the improvement of Salicornia bigelovii through selective breeding, 10.1016/j.ecoleng.2010.01.002
  259. Zhang J., Li X., Jiang G., Xu Y., He Y., Pyramiding of Xa7 and Xa21 for the improvement of disease resistance to bacterial blight in hybrid rice, 10.1111/j.1439-0523.2006.01281.x
  260. Zhang J., Agric. Sci. Technol., 9, 17 (2008)
  261. Zhu Jian-Kang, SALT ANDDROUGHTSTRESSSIGNALTRANSDUCTION INPLANTS, 10.1146/annurev.arplant.53.091401.143329
  262. Ziaf K., Pak. J. Bot., 41, 1797 (2009)
  263. Zuther Ellen, Koehl Karin, Kopka Joachim, Comparative Metabolome Analysis of the Salt Response in Breeding Cultivars of Rice, Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops ISBN:9781402055775 p.285-315, 10.1007/978-1-4020-5578-2_12
Bibliographic reference Ruan, Cheng-Jiang ; Teixeira Da Silva, Jaime ; Mopper, Susan ; Qin, Pei ; Lutts, Stanley. Halophyte improvement for a salinized world. In: Critical Reviews in Plant Sciences, Vol. 29, no. 6, p. 329-359 (2010)
Permanent URL http://hdl.handle.net/2078.1/73283