Fuchs, M
Gonze, Xavier
[UCL]
Fully nonlocal exchange-correlation functionals derived from the adiabatic-connection fluctuation-dissipation theorem can go beyond local or gradient corrected functionals and include the van der Waals interaction. We implement three functionals of this class, in a pseudopotential plane-wave framework, (1) using the random-phase approximation (RPA), (2) adding to the RPA short-range correlations (RPA+), and (3) including density fluctuations through an exchange kernel. We find the binding energy of the H-2 and Be-2 molecules described, by all three functionals, within 0.1 eV accuracy.
- Hohenberg P., Kohn W., Inhomogeneous Electron Gas, 10.1103/physrev.136.b864
- Kohn W., Sham L. J., Self-Consistent Equations Including Exchange and Correlation Effects, 10.1103/physrev.140.a1133
- Perdew John P., Burke Kieron, Ernzerhof Matthias, Generalized Gradient Approximation Made Simple, 10.1103/physrevlett.77.3865
- Becke Axel D., Density‐functional thermochemistry. III. The role of exact exchange, 10.1063/1.464913
- Burke Kieron, Ernzerhof Matthias, Perdew John P., The adiabatic connection method: a non-empirical hybrid, 10.1016/s0009-2614(96)01373-5
- Curtiss Larry A., Raghavachari Krishnan, Redfern Paul C., Pople John A., Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation, 10.1063/1.473182
- Langreth D.C., Perdew J.P., The exchange-correlation energy of a metallic surface, 10.1016/0038-1098(75)90618-3
- Langreth David C., Perdew John P., Exchange-correlation energy of a metallic surface: Wave-vector analysis, 10.1103/physrevb.15.2884
- Dobson John F., Wang Jun, Successful Test of a Seamless van der Waals Density Functional, 10.1103/physrevlett.82.2123
- S. Kurth, Phys. Rev. B, 59, 10 (1999)
- Petersilka M., Gossmann U. J., Gross E. K. U., Excitation Energies from Time-Dependent Density-Functional Theory, 10.1103/physrevlett.76.1212
- Lein M., Dobson J. F., Gross E. K. U., Toward the description of van der Waals interactions within density functional theory, 10.1002/(sici)1096-987x(19990115)20:1<12::aid-jcc4>3.0.co;2-u
- Kohn Walter, Meir Yigal, Makarov Dmitrii E., van der Waals Energies in Density Functional Theory, 10.1103/physrevlett.80.4153
- Hult Erika, Rydberg Henrik, Lundqvist Bengt I., Langreth David C., Unified treatment of asymptotic van der Waals forces, 10.1103/physrevb.59.4708
- Furche Filipp, Molecular tests of the random phase approximation to the exchange-correlation energy functional, 10.1103/physrevb.64.195120
- Troullier N., Martins José Luriaas, Efficient pseudopotentials for plane-wave calculations, 10.1103/physrevb.43.1993
- Fuchs Martin, Scheffler Matthias, Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory, 10.1016/s0010-4655(98)00201-x
- R.W. Godby, Phys. Rev. B, 37, 10 (1988)
- Umrigar C. J., Gonze Xavier, Accurate exchange-correlation potentials and total-energy components for the helium isoelectronic series, 10.1103/physreva.50.3827
- Ernzerhof Matthias, Construction of the adiabatic connection, 10.1016/s0009-2614(96)01225-0
- Seidl Michael, Perdew John P., Kurth Stefan, Simulation of All-Order Density-Functional Perturbation Theory, Using the Second Order and the Strong-Correlation Limit, 10.1103/physrevlett.84.5070
- Görling Andreas, Levy Mel, Exact Kohn-Sham scheme based on perturbation theory, 10.1103/physreva.50.196
- Kolos W., Roothaan C. C. J., Accurate Electronic Wave Functions for theH2Molecule, 10.1103/revmodphys.32.219
- Stärck J., Meyer W., The ground state potential of the beryllium dimer, 10.1016/0009-2614(96)00657-4
- M. Lein, Phys. Rev. B, 61, 13 (2000)
- J.F. Dobson, Phys. Rev. B, 62, 10 (2000)
Bibliographic reference |
Fuchs, M ; Gonze, Xavier. Accurate density functionals: Approaches using the adiabatic-connection fluctuation-dissipation theorem. In: Physical review. B, Condensed matter and materials physics, Vol. 65, no. 23, p. 235109:1-4 (2002) |
Permanent URL |
http://hdl.handle.net/2078.1/41814 |