Li, G.
Van Keilegom, Ingrid
[UCL]
Let (X, Y) be a random vector, where Y denotes the variable of interest possibly subject to random right censoring, and X is a covariate. We construct confidence intervals and bands for the conditional survival and quantile function of Y given X using a non-parametric likelihood ratio approach. This approach was introduced by Thomas & Grunkemeier (1975), who estimated confidence intervals of survival probabilities based on right censored data. The method is appealing for several reasons: it always produces intervals inside [0, 1], it does not involve variance estimation, and can produce asymmetric intervals. Asymptotic results for the confidence intervals and bands are obtained, as well as simulation results, in which the performance of the likelihood ratio intervals and bands is compared with that of the normal approximation method. We also propose a bandwidth selection procedure based on the bootstrap and apply the technique on a real data set.
- Akritas M. G., Ann. Statist., 22, 1299 (1994)
- 2P. K. Andersen, O. Borgan, R. D. Gill, and N. Keiding (1993 ).Statistical models based on counting processes.Springer-Verlag, New York.
- 3R. Beran (1981 ). Non-parametric regression with randomly censored survival data . Technical Report, Department of Statistics, University of California, Berkeley.
- Chen S. X., Ann. Inst. Statist. Math., 45, 621 (1993)
- Chen S.X., Empirical Likelihood Confidence Intervals for Linear Regression Coefficients, 10.1006/jmva.1994.1011
- Chen S. X., Ann. Statist., 21, 1166 (1993)
- Chen S. X., Biometrika, 87, 946 (2000)
- Dabrowska D. M., Scand. J. Statist., 14, 181 (1987)
- Dabrowska D. M., Scand. J. Statist., 19, 351 (1992)
- Einmahl John H. J., McKeague Ian W., Confidence tubes for multiple quantile plots via empirical likelihood, 10.1214/aos/1017938929
- Gonzalez Manteiga W., J. Nonparametr. Statist., 4, 65 (1994)
- Hall P., Statistics, 22, 215 (1991)
- 13P. Hall (1992 ).The bootstrap and Edgeworth expansion. Springer-Verlag, New York.
- Hall W. J., Biometrika, 67, 133 (1980)
- Hollander M., J. Amer. Statist. Assoc., 92, 215 (1997)
- Kaplan E. L., J. Amer. Statist. Assoc., 53, 457 (1958)
- Kardaun O., Statist. Neerlandica, 37, 103 (1983)
- Kitamura Yuichi, Empirical likelihood methods with weakly dependent processes, 10.1214/aos/1069362388
- Kolaczyk E. D., Statist. Sinica, 4, 199 (1994)
- Li Gang, On nonparametric likelihood ratio estimation of survival probabilities for censored data, 10.1016/0167-7152(94)00210-y
- Li G., Math. Methods Statist., 6, 224 (1997)
- Li Gang, Datta Somnath, 10.1023/a:1014644700806
- Li G., Ann. Statist., 23, 787 (1995)
- Li Gang, Hollander Myles, McKeague Ian W., Yang Jie, Nonparametric likelihood ratio confidence bands for quantile functions from incomplete survival data, 10.1214/aos/1032894455
- McKeague I. W., Statist. Sinica, 6, 579 (1996)
- McKeague I. W., Ann. Statist., 18, 1172 (1990)
- McKeague I. W., Ann. Statist., 23, 450 (1995)
- Murphy S. A., J. Amer. Statist. Assoc., 90, 1399 (1995)
- Nair V. N., Technometrics, 26, 265 (1984)
- Owen A., Biometrika, 75, 237 (1988)
- Owen A., Ann. Statist., 18, 90 (1990)
- Owen A., Ann. Statist., 19, 1725 (1991)
- Owen A., J. Amer. Statist. Assoc., 90, 516 (1995)
- Qin J., Ann. Statist., 21, 1182 (1993)
- Qin J., Ann. Statist., 22, 300 (1994)
- Stone C. J., Ann. Statist., 5, 595 (1977)
- Thomas D. R., J. Amer. Statist. Assoc., 70, 865 (1975)
- Van Keilegom Ingrid, Veraverbeke Noël, Estimation and Bootstrap with Censored Data in Fixed Design Nonparametric Regression, 10.1023/a:1003166728321
- Van Keilegom Ingrid, Veraverbeke Noël, Bootstrapping quantiles in a fixed design regression model with censored data, 10.1016/s0378-3758(97)00126-2
- Wang Qi-Hua, Jing Bing-Yi, Empirical likelihood for partial linear models with fixed designs, 10.1016/s0167-7152(98)00230-2
Bibliographic reference |
Li, G. ; Van Keilegom, Ingrid. Likelihood ratio confidence bands in non-parametric regression with censored data. In: Scandinavian Journal of Statistics : theory and applications, Vol. 29, no. 3, p. 547-562 (2002) |
Permanent URL |
http://hdl.handle.net/2078.1/41714 |