User menu

Influence of microstructure-driven strain localization on the ductile fracture of metallic alloys

Bibliographic reference Pardoen, Thomas ; Brechet, Y.. Influence of microstructure-driven strain localization on the ductile fracture of metallic alloys. In: Philosophical Magazine, Vol. 84, no. 3-5, p. 269-297 (2004)
Permanent URL
  1. Abaqus, ABAQUS User's Manual, Version 5.7 (1997)
  2. Achon P, Ecole Nationale Supérieure des Mines de Paris (1994)
  3. Basquin OH, Proc. Am. Soc. Testing Mater., 10, 625 (1910)
  4. Becker R., The effect of porosity distribution on ductile failure, 10.1016/0022-5096(87)90018-4
  5. Benzerga AA, Ecole Nationale Supérieure des Mines de Paris (2000)
  6. Brechet Y., Magnin T., Sornette D., The coffin-manson law as a consequence of the statistical nature of the LCF surface damage, 10.1016/0956-7151(92)90146-6
  7. Brechet Y., Louchet F., A physical approach to the toughness problem: From thermodynamics to kinetics—I. The homogeneous case, 10.1016/0956-7151(93)90011-g
  8. Brocks W., Sun D.-Z., Hönig A., Verification of the transferability of micromechanical parameters by cell model calculations with visco-plastic materials, 10.1016/s0749-6419(95)00039-9
  9. Bron F Besson J Pineau A Ehrström J-C 2002Proceedings of the 14th Biennial Conference on FractureCracow, Poland, 8–13 September 2002 Warley West MidlandsEngineering Materials and Advisory Servicespp. 369–376
  10. Brown L. M., Medalist R. F. Mehl, Toward A Sound Understanding of Dislocation Plasticity, 10.1007/bf02646493
  11. Brown LM Embury JD 1973Proceedings of the Third International Conference on the Strength of Metals and AlloysLondonInstitute of Metalspp. 164–169
  12. Clayton J. Q., Knott J. F., Observations of fibrous fracture modes in a prestrained low-alloy steel, 10.1179/030634576790432083
  13. Coffin F, J. Mater., 6, 388 (1971)
  14. Cox T. B., Low J. R., An investigation of the plastic fracture of AISI 4340 and 18 Nickel-200 grade maraging steels, 10.1007/bf02646633
  15. D'Escatha Y, Elastic–Plastic Fracture, pp. 229–248 (1979)
  16. Deschamps A, J. Phys. Paris, IV, 10, 151 (2000)
  17. Deschamps A., Livet F., Bréchet Y., Influence of predeformation on ageing in an Al–Zn–Mg alloy—I. Microstructure evolution and mechanical properties, 10.1016/s1359-6454(98)00293-6
  18. Deshpande V.S., Needleman A., Van der Giessen E., A discrete dislocation analysis of near-threshold fatigue crack growth, 10.1016/s1359-6454(01)00220-8
  19. Devillers-Guerville L., Besson J., Pineau A., Notch fracture toughness of a cast duplex stainless steel: modelling of experimental scatter and size effect, 10.1016/s0029-5493(96)01321-0
  20. Dorward R. C., Beerntsen DJ., Grain structure and quench-rate effects on strength and toughness of AA7050 Al-Zn-Mg-Cu-Zr alloy plate, 10.1007/bf02671263
  21. Dumont D., Deschamps A., Brechet Y., On the relationship between microstructure, strength and toughness in AA7050 aluminum alloy, 10.1016/s0921-5093(03)00145-x
  22. Embury JD, Z. Metallk., 65, 45 (1974)
  23. Estrin Y., Kubin L.P., Aifantis E.C., Introductory remarks to the viewpoint set on propagative plastic instabilities, 10.1016/0956-716x(93)90100-7
  24. Faleskog Jonas, Shih C.Fong, Micromechanics of coalescence—I. Synergistic effects of elasticity, plastic yielding and multi-size-scale voids, 10.1016/s0022-5096(96)00078-6
  25. Fleck N.A., Hutchinson J.W., Strain Gradient Plasticity, Advances in Applied Mechanics (1997) ISBN:9780120020331 p.295-361, 10.1016/s0065-2156(08)70388-0
  26. Gologanu M, Continuum Micromechanics, 377, pp. 61–130 (1997)
  27. Gologanu Mihai, Leblond Jean-Baptiste, Devaux Josette, Theoretical models for void coalescence in porous ductile solids. II. Coalescence “in columns”, 10.1016/s0020-7683(00)00355-3
  28. Gomiero P., Brechet Y., Louchet F., Tourabi A., Wack B., Microstructure and mechanical properties of a 2091 AlLi alloy—III. Quantitative analysis of portevin le chatelier instabilities and relation to toughness in AlLi, AlCuMg and AlLiCuMg (2091) alloys, 10.1016/0956-7151(92)90029-e
  29. Gurson A. L., Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media, 10.1115/1.3443401
  30. Hahn G. T., Rosenfield A. R., Metallurgical factors affecting fracture toughness of aluminum alloys, 10.1007/bf02672285
  31. Hancock JW, J. Mech. Phys. Solids, 14, 147 (1977)
  32. Hill R, The Mathematical Theory of Plasticity, Oxford University Press (1950)
  33. Hosford WF, Metal Forming—Mechanics and Metallurgy (1993)
  34. Huang Y., The role of nonuniform particle distribution in plastic flow localization, 10.1016/0167-6636(93)90057-x
  35. Knott JF, Fundamentals of Fracture Mechanics (1973)
  36. Koplik J., Needleman A., Void growth and coalescence in porous plastic solids, 10.1016/0020-7683(88)90051-0
  37. Kubin L.P., Estrin Y., The portevin-Le Chatelier effect in deformation with constant stress rate, 10.1016/0001-6160(85)90082-3
  38. Lebyodkin M, Dunin-Barkowskii L, Bréchet Y, Estrin Y, Kubin L.P, Spatio-temporal dynamics of the Portevin–Le Chatelier effect: experiment and modelling, 10.1016/s1359-6454(00)00067-7
  39. Li B. Q., Reynolds A. P., 10.1023/a:1004426820624
  40. Ludwig W, Buffière J-Y, Savelli S, Cloetens P, Study of the interaction of a short fatigue crack with grain boundaries in a cast Al alloy using X-ray microtomography, 10.1016/s1359-6454(02)00320-8
  41. Luo L.G., Ryks A., Embury J.D., On the development of a metallographic method to determine the strain distribution ahead of a crack tip, 10.1016/0026-0800(89)90013-x
  42. Lynch B. P., Tensile Deformation and Fracture in High-Strength Al-Zn-Mg Alloys, 10.1179/030634573790445398
  43. Magnin T, Proceedings of the Eigth Conference on Fracture (1990)
  44. Magnin T., Coudreuse L., Lardon J.M., A quantitative approach to fatigue damage evolution in FCC and BCC stainless steels, 10.1016/0036-9748(85)90156-5
  45. Manson SS Hirshberg MH 1964Proceedings of the Tenth Sagamare Army Materials Research Conference, Syracuse University Pressp. 13
  46. Marino B., Mudry F., Pineau A., Experimental study of cavity growth in ductile rupture, 10.1016/0013-7944(85)90038-4
  47. McClintock FA, Int. J. Fracture, 4, 103 (1968)
  48. Mudry F, Thèse d'état, Université de Technologie de Compiègne (1982)
  49. Mughrabi H Wang K Differt K Essmann U 1983Fatigue MechanismsSpecial Technical Publication edited by J. Lankford Philadelphia PennsylvaniaAmerican Society for Testing and Materialsp. 5
  50. Needleman A. , Continuum mechanics studies of plastic instabilities, 10.1051/rphysap:01988002304058500
  51. Needleman A, Eur. J. Mech. A Solids, 9, 193 (1990)
  52. Needleman A., Tvergaard V., An analysis of ductile rupture modes at a crack tip, 10.1016/0022-5096(87)90034-2
  53. Needleman A., Van der Giessen E., Micromechanics of Fracture: Connecting Physics to Engineering, 10.1557/mrs2001.44
  54. Pardoen T, Hutchinson J.W, An extended model for void growth and coalescence, 10.1016/s0022-5096(00)00019-3
  55. Pardoen T., Doghri I., Delannay F., Experimental and numerical comparison of void growth models and void coalescence criteria for the prediction of ductile fracture in copper bars, 10.1016/s1359-6454(97)00247-4
  56. Pardoen T., Dumont D., Deschamps A., Brechet Y., Grain boundary versus transgranular ductile failure, 10.1016/s0022-5096(02)00102-3
  57. Pardoen T., Delannay F., Assessment of void growth models from porosity measurements in cold-drawn copper bars, 10.1007/s11661-998-0014-4
  58. Penning P, Mathematics of the portevin-le chatelier effect, 10.1016/0001-6160(72)90165-4
  59. Pineau A 1992Topics in Fracture and Fatigueedited by A. S. Argon BerlinSpringerpp. 197–234
  60. Polák J., Liškutían P., NUCLEATION AND SHORT CRACK GROWTH IN FATIGUED POLYCRYSTALLINE COPPER, 10.1111/j.1460-2695.1990.tb00584.x
  61. Ramade C 1990 PhD Thesis St Etienne France
  62. Rice JR 1976The Localization of Plastic Deformationedited by W. T. Koiter AmsterdamNorth-Hollandpp. 207–220
  63. Rice JR Johnson MA 1970Inelastic Behavior of Solidsedited by M. F. Kanninen, W. G. Adler, A. R. Rosenfield and R. I. Jaffee New YorkMcGraw-Hillpp. 641–672
  64. Richelsen A.B., Tvergaard V., Dilatant plasticity or upper bound estimates for porous ductile solids, 10.1016/0956-7151(94)90198-8
  65. Ryum N, The influence of a precipitate-free zone on the mechanical properties of an Al-Mg-Zn alloy, 10.1016/0001-6160(68)90018-7
  66. Suh C. M., Kitagawa H., CRACK GROWTH BEHAVIOUR OF FATIGUE MICROCRACKS IN LOW CARBON STEELS, 10.1111/j.1460-2695.1987.tb00468.x
  67. Thomason PF, Ductile Fracture of Metals (1990)
  68. Tvergaard Viggo, Influence of voids on shear band instabilities under plane strain conditions, 10.1007/bf00036191
  69. Tvergaard V, Harvard University (2001)
  70. Unwin P.N.T, Nicholson R.B, The nucleation and initial stages of growth of grain boundary precipitates in Al-Zn-Mg and Al-Mg alloys, 10.1016/0001-6160(69)90155-2
  71. Unwin P, J. Inst. Metals, 97, 299 (1969)
  72. Vasudévan A.K., Doherty R.D., Grain boundary ductile fracture in precipitation hardened aluminum alloys, 10.1016/0001-6160(87)90001-0
  73. Winter A. T., A model for the fatigue of copper at low plastic strain amplitudes, 10.1080/14786437408207230
  74. Worswick M.J, Chen Z.T, Pilkey A.K, Lloyd D, Court S, Damage characterization and damage percolation modelling in aluminum alloy sheet, 10.1016/s1359-6454(01)00163-x
  75. Xia L, Ductile crack growth—II. Void nucleation and geometry effects on macroscopic fracture behavior, 10.1016/0022-5096(95)00063-o