User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

Effect of boundary conditions and heat source distribution on temperature distribution in friction stir welding

  1. Zahedul M., J. Mater. Process. Manuf. Sci, 10, 91 (2001)
  2. Khandkar M. Z. H., Khan J. A., Reynolds A. P., Prediction of temperature distribution and thermal history during friction stir welding: input torque based model, 10.1179/136217103225010943
  3. TANG W., GUO X., McCLURE J. C., MURR L. E., NUNES A., Heat Input and Temperature Distribution in Friction Stir Welding, 10.1106/55tf-pf2g-jbh2-1q2b
  4. Schmidt H, Hattel J, Wert J, An analytical model for the heat generation in friction stir welding, 10.1088/0965-0393/12/1/013
  5. Frigaard Ø., Grong Ø., Midling O. T., A process model for friction stir welding of age hardening aluminum alloys, 10.1007/s11661-001-0128-4
  6. Song M., Kovacevic R., Thermal modeling of friction stir welding in a moving coordinate system and its validation, 10.1016/s0890-6955(03)00022-1
  7. CHAO YUH J., QI XINHAI, Thermal and Thermo-Mechanical Modeling of Friction Stir Welding of Aluminum Alloy 6061-T6, 10.1106/ltkr-jfbm-rgmv-wvcf
  8. Ulysse P., Three-dimensional modeling of the friction stir-welding process, 10.1016/s0890-6955(02)00114-1
  9. Colegrove P.A., Shercliff H.R., Development of Trivex friction stir welding tool Part 2 – three-dimensional flow modelling, 10.1179/136217104225021661
  10. De Vuyst T., D’Alvise L., Simar A., de Meester B., Pierret S., Finite Element Modelling of Friction Stir Welding of Aluminium Alloy Plates-Inverse Analysis using a Genetic Algorithm, 10.1007/bf03266475
  11. Shercliff H. R., Math. Model. Weld. Phenomena, 6, 927 (2002)
  12. Seidel T. U., Reynolds A. P., Two-dimensional friction stir welding process model based on fluid mechanics, 10.1179/136217103225010952
  13. Colegrove P. A., Shercliff H. R., Two-dimensional CFD modelling of flow round profiled FSW tooling, 10.1179/136217104225021832
  14. Colegrove P.A., Shercliff H.R., Development of Trivex friction stir welding tool Part 1 – two-dimensional flow modelling and experimental validation, 10.1179/136217104225021670
  15. Chen C.M., Kovacevic R., Finite element modeling of friction stir welding—thermal and thermomechanical analysis, 10.1016/s0890-6955(03)00158-5
  16. Colegrove P. A., Shercliff H. R., Experimental and numerical analysis of aluminium alloy 7075-T7351 friction stir welds, 10.1179/136217103225005534
  17. Chao Y. J., Trans. ASME, 125, 138 (2003)
  18. Rosakis P., Rosakis A.J., Ravichandran G., Hodowany J., A thermodynamic internal variable model for the partition of plastic work into heat and stored energy in metals, 10.1016/s0022-5096(99)00048-4
  19. Dong P., Lu F., Hong J.K., Cao Z., Coupled thermomechanical analysis of friction stir welding process using simplified models, 10.1179/136217101101538884
  20. Lambrakos S. G., Fonda R. W., Milewski J. O., Mitchell J. E., Analysis of friction stir welds using thermocouple measurements, 10.1179/136217103225005624
Bibliographic reference Simar, Aude ; Lecomte-Beckers, J ; Pardoen, Thomas ; de Meester, B.. Effect of boundary conditions and heat source distribution on temperature distribution in friction stir welding. In: Science and Technology of Welding and Joining, Vol. 11, no. 2, p. 170-177 (2006)
Permanent URL http://hdl.handle.net/2078.1/38525