User menu

Goodness-of-fit tests in parametric regression based on the estimation of the error distribution

Bibliographic reference Van Keilegom, Ingrid ; Manteiga, Wenceslao Gonzalez ; Sellero, Cesar Sanchez. Goodness-of-fit tests in parametric regression based on the estimation of the error distribution. In: Test, Vol. 17, no. 2, p. 401-415 (2008)
Permanent URL
  1. Akritas MG, Van Keilegom I (2001) Nonparametric estimation of the residual distribution. Scand J Stat 28:549–568
  2. Alcalá JT, Cristóbal JA, González Manteiga W (1999) Goodness-of-fit test for linear models based on local polynomials. Stat Probab Lett 42:39–46
  3. Bellver C (1987) Influence of particulate pollution on the positions of neutral points in the sky in Seville (Spain). Atmos Environ 21:699–702
  4. Chen SX, Härdle W, Li M (2003) An empirical likelihood goodness-of-fit test for time series. J Roy Stat Soc Ser B 65:663–678
  5. Choi E, Hall P, Rousson V (2000) Data sharpening methods for bias reduction in nonparametric regression. Ann Stat 28:1339–1355
  6. Cleveland WS (1993) Visualizing data. Hobart Press, Summit
  7. Dette H (1999) A consistent test for the functional form of a regression based on a difference of variance estimators. Ann Stat 27:1012–1040
  8. Dette H, Munk A (1998) Validation of linear regression models. Ann Stat 26:778–800
  9. Dette H, Munk A, Wagner T (2000) Testing model assumptions in multivariate linear regression models. J Nonparametric Stat 12:309–342
  10. Fan J, Zhang C, Zhang J (2001) Generalized likelihood ratio statistics and Wilks phenomenon. Ann Stat 29:153–193
  11. González Manteiga W, Prada Sánchez JM, Romo J (1994) The bootstrap—a review. Comput Stat 9:165–205
  12. Hall P, DiCiccio TJ, Romano JP (1989) On smoothing and the bootstrap. Ann Stat 17:692–704
  13. Härdle W, Mammen E (1993) Comparing nonparametric versus parametric regression fits. Ann Stat 21:1926–1947
  14. Hart Jeffrey D., Nonparametric Smoothing and Lack-of-Fit Tests, ISBN:9781475727241, 10.1007/978-1-4757-2722-7
  15. Jennrich RI (1969) Asymptotic properties of non-linear least-squares estimators. Ann Math Stat 40:633–643
  16. Koul HL, Lahiri SN (1994) On bootstrapping M-estimated residual processes in multiple linear regression models. J Multivar Anal 49:255–265
  17. Mammen E (2000) Resampling methods for nonparametric regression. In: Schimek MG (ed) Smoothing and regression. Wiley, New York
  18. Sánchez Sellero C (2001) Inferencia estadística en datos con censura y/o truncamiento. PhD thesis, University of Santiago de Compostela
  19. Seber G. A. F., Wild C. J., Nonlinear Regression : Seber/Nonlinear Regression, ISBN:9780471725312, 10.1002/0471725315
  20. Stute W (1997) Nonparametric model checks for regression. Ann Stat 25:613–641
  21. Stute W, González Manteiga W, Presedo Quindimil M (1998) Bootstrap approximations in model checks for regression. J Am Stat Assoc 93:141–149
  22. van der Vaart A. W., Asymptotic Statistics, ISBN:9780511802256, 10.1017/cbo9780511802256
  23. Van Keilegom I, Veraverbeke N (2002) Density and hazard estimation in censored regression models. Bernoulli 8:607–625
  24. White H (1981) Consequences and detection of misspecified nonlinear regression models. J Am Stat Assoc 76:419–433
  25. White H (1982) Maximum likelihood estimation of misspecified models. Econometrica 50:1–25
  26. Wu CF (1981) Asymptotic theory of nonlinear least-squares estimation. Ann Stat 9:501–513
  27. Zhang CM (2003) Adaptive tests of regression functions via multiscale generalized likelihood ratios. Can J Stat 31:151–171
  28. Zhang CM, Dette H (2004) A power comparison between nonparametric regression tests. Stat Probab Lett 66:289–301
  29. Zhu L-X (2003) Model checking of dimension-reduction type for regression. Stat Sin 13:283–296