Van Schaftingen, Jean
[UCL]
We give an explicit sequence of polarizations such that for every measurable function, the sequence of iterated polarizations converge to the symmetric rearrangement of the initial function.
- A. Baernstein, II, A unified approach to symmetrization, Partial differential equations of elliptic type (Cortona, 1992), Sympos. Math., XXXV, Cambridge University Press, Cambridge, 1994, pp. 47–91
- Brascamp H.J., Lieb E.H., Luttinger J.M.: A general rearrangement inequality for multiple integrals. J. Funct. Anal. 17, 227–237 (1974)
- Brock F., Solynin A.Y.: An approach to symmetrization via polarization. Trans. Amer. Math. Soc. 352, 1759–1796 (2000)
- Crandall M.G., Tartar L.: Some relations between nonexpansive and order preserving mappings. Proc. Amer. Math. Soc. 78, 385–390 (1980)
- J. A. Crowe, J. A. Zweibel and P. C. Rosenbloom, Rearrangements of functions, J. Funct. Anal. 66 (1986), 432–438.
- V. N. Dubinin, Transformation of functions and the Dirichlet principle, Mat. Zametki 38 (1985), 49–55, 169.
- V. N. Dubinin, Transformation of condensers in space, Dokl. Akad. Nauk SSSR 296 (1987), 18–20.
- V. N. Dubinin, Transformations of condensers in an n-dimensional space, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 196 (1991), Modul. Funktsii Kvadrat. Formy. 2, 41–60, 173.
- M. A. Krasnosel’skiĭ and J. B. Rutickiĭ, Convex functions and Orlicz spaces, Noordhoff, Groningen, 1961.
- Pruss A.R.: Discrete convolution-rearrangement inequalities and the Faber-Krahn inequality on regular trees. Duke Math. J. 91, 463–514 (1998)
- M. M. Rao and Z. D. Ren, Theory of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, 146, Marcel Dekker, New York, 1991.
- D. Smets and M. Willem, Partial symmetry and asymptotic behavior for some elliptic variational problems, Calc. Var. Partial Differential Equations 18 (2003), 57–75.
- A. Y. Solynin, Polarization and functional inequalities, Algebra i Analiz 8 (1996), 148–185.
- G. Talenti, Inequalities in rearrangement invariant function spaces, Nonlinear analysis, function spaces and applications, 5 (Prague, 1994), Prometheus, Prague, 1994, pp. 177–230.
- Van Schaftingen J.: Universal approximation of symmetrizations by polarizations. Proc. Amer. Math. Soc. 134, 177–186 (2006)
- J. Van Schaftingen, Anisotropic symmetrization, Ann. Inst. H. Poincaré Anal. Non Linéaire 23 (2006), 539–565.
- J. Van Schaftingen, Approximation of symmetrizations and symmetry of critical points, Topol. Methods Nonlinear Anal. 28 (2006) 61–85.
- J. Van Schaftingen and M. Willem, Set transformations, symmetrizations and isoperimetric inequalities, Nonlinear analysis and applications to physical sciences, Springer Italia, Milan, 2004, pp. 135–152.
- Wolontis V.: Properties of conformal invariants. Amer. J. Math. 74, 587–606 (1952)
Bibliographic reference |
Van Schaftingen, Jean. Explicit approximation of the symmetric rearrangement by polarizations. In: Archiv der Mathematik, Vol. 93, no. 2, p. 181-190 (2009) |
Permanent URL |
http://hdl.handle.net/2078.1/35391 |