User menu

Microbial 2,4,6-trinitrotoluene degradation: could we learn from (bio)chemistry for bioremediation and vice versa?

Bibliographic reference Stenuit, B.A. ; Agathos, Spiros N.. Microbial 2,4,6-trinitrotoluene degradation: could we learn from (bio)chemistry for bioremediation and vice versa?. In: Applied Microbiology and Biotechnology, Vol. 88, no. 5, p. 1043-1064 (2010)
Permanent URL http://hdl.handle.net/2078.1/34998
  1. Ahmad F, Hughes JB (2000) Anaerobic transformation of TNT by Clostridium. In: Spain JC, Hughes JB, Knackmuss H-J (eds) Biodegradation of nitroaromatic compounds and explosives. Lewis, New York, pp 185–212
  2. Arevalo-Ferro C, Hentzer M, Reil G, Görg A, Kjelleberg S, Givskov M, Riedel K, Eberl L (2003) Identification of quorum-sensing regulated proteins in the opportunistic pathogen Pseudomonas aeruginosa by proteomics. Environ Microbiol 5:1350–1369
  3. Axtell C, Johnston CG, Bumpus JA (2000) Bioremediation of soil contaminated with explosives at the Naval Weapons Station Yorktown. Soil Sed Contam Int J 9:537–548
  4. Ayoub K, van Hullebusch ED, Cassir M, Bermond A (2010) Application of advanced oxidation processes for TNT removal: a review. J Hazard Mater 178:10–28
  5. Badgujar DM, Talawar MB, Asthana SN, Mahulikar PP (2008) Advances in science and technology of modern energetic materials: an overview. J Hazard Mater 151:289–305
  6. Bankar A, Kumar A, Zinjarde S (2009) Environmental and industrial applications of Yarrowia lipolytica. Appl Microbiol Biotechnol 84:847–865
  7. Barreto-Rodrigues M, Silva FT, Paiva TCB (2009) Characterization of wastewater from the Brazilian TNT industry. J Hazard Mater 164:385–388
  8. Barth E (1993) Handbook: approaches for the remediation of federal facility sites contaminated with explosive or radioactive wastes. EPA/625/R-93/013. Office of Research and Development, US EPA, Cincinnati
  9. Bartling J, Kotzerke A, Mai M, Esperschütz J, Buegger F, Schloter M, Wilke B-M (2009) Microbial community structure and function during abnormal curve development of substrate-induced respiration measurements. Chemosphere 77:1488–1494
  10. Behrend C, Heesche-Wagner K (1999) Formation of hydride-Meisenheimer complexes of picric acid (2,4,6-trinitrophenol) and 2,4-dinitrophenol during mineralization of picric acid by Nocardioides sp. strain CB 22–2. Appl Environ Microbiol 65:1372–1377
  11. Beynon ER, Symons ZC, Jackson RG, Lorenz A, Rylott EL, Bruce NC (2009) The role of oxophytodienoate reductases in the detoxification of the explosive 2,4,6-trinitrotoluene by Arabidopsis. Plant Physiol 151:253–261
  12. Bolin F (1999) Leveling land mines with biotechnology. Nat Biotechnol 17:732–732
  13. Boon N (2010) Bioremediation: slow-release inoculation by hot spot tubes. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Experimental protocols and appendices, vol 5. Springer, Heidelberg, pp 4545–4551
  14. Boon N., Verstraete W., Bioaugmentation of Hydrocarbons, Handbook of Hydrocarbon and Lipid Microbiology (2010) ISBN:9783540775843 p.2531-2543, 10.1007/978-3-540-77587-4_188
  15. Bordeleau G, Martel R, Ampleman G, Thiboutot S (2008) Environmental impacts of training activities at an air weapons range. J Environ Qual 37:308–317
  16. Brentner LB, Mukherji ST, Walsh SA, Schnoor JL (2010) Localization of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT) in poplar and switchgrass plants using phosphor imager autoradiography. Environ Pollut 158:470–475
  17. Bressler DC, Gray MR (2003) Transport and reaction processes in bioremediation of organic contaminants. 1. Review of bacterial degradation and transport. Int J Chem React Eng 1:R3
  18. Brigé A, Van den Hemel D, Carpentier W, De Smet L, Van Beeumen JJ (2006) Comparative characterization and expression analysis of the four Old Yellow Enzyme homologues from Shewanella oneidensis indicate differences in physiological function. Biochem J 394:335–344
  19. Caballero A, Ramos JL (2006) A double mutant of Pseudomonas putida JLR11 deficient in the synthesis of the nitroreductase PnrA and assimilatory nitrite reductase NasB is impaired for growth on 2,4,6-trinitrotoluene (TNT). Environ Microbiol 8:1306–1310
  20. Caballero A, Esteve-Núñez A, Zylstra GJ, Ramos JL (2005) Assimilation of nitrogen from nitrite and trinitrotoluene in Pseudomonas putida JLR11. J Bacteriol 187:396–399
  21. Claus H, Bausinger T, Lehmler I, Perret N, Fels G, Dehner U, Preuss J, König H (2007) Transformation of 2,4,6-trinitrotoluene (TNT) by Raoultella terrigena. Biodegradation 18:27–35
  22. Clements A, Lewis M (2006) Arene-cation interactions of positive quadrupole moment aromatics and arene-anion interactions of negative quadrupole moment aromatics. J Phys Chem A 110:12705–12710
  23. Copley SD (2009) Evolution of efficient pathways for degradation of anthropogenic chemicals. Nat Chem Biol 5:559–566
  24. Coyle CM, Cheng JZ, O'Connor SE, Panaccione DG (2010) An Old Yellow Enzyme gene controls the branch point between Aspergillus fumigatus and Claviceps purpurea ergot alkaloid pathways. Appl Environ Microbiol 76:3898–3903
  25. Daprato RC, Zhang C, Spain JC, Hughes JB (2005) Modeling aerobic bioremediation of 2,4-dinitrotoluene in a bioslurry reactor. Environ Eng Sci 22:676–688
  26. Dario A, Schroeder M, Nyanhongo GS, Englmayer G, Guebitz GM (2010) Development of a biodegradable ethylene glycol dinitrate-based explosive. J Hazard Mater 176:125–130
  27. Das P, Datta R, Makris KC, Sarkar D (2010) Vetiver grass is capable of removing TNT from soil in the presence of urea. Environ Pollut 158:1980–1983
  28. Davis MC (2005) Trinitrotoluene (TNT) and environmentally friendly methods for making the same. US patent 6881871
  29. de Lorenzo V (2008) Systems biology approaches to bioremediation. Curr Opin Biotechnol 19:579–589
  30. Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I, de Montigny J, Marck C, Neuveglise C, Talla E et al (2004) Genome evolution in yeasts. Nature 430:35–44
  31. Duque E, Haidour A, Godoy F, Ramos J L, Construction of a Pseudomonas hybrid strain that mineralizes 2,4,6-trinitrotoluene., 10.1128/jb.175.8.2278-2283.1993
  32. Duringer JM, Morrie Craig A, Smith DJ, Chaney RL (2010) Uptake and transformation of soil [14C]-trinitrotoluene by cool-season grasses. Environ Sci Technol 44:6325–6330
  33. Edgar RC (2004) Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797
  34. Ehira S, Teramoto H, Inui M, Yukawa H (2010) A novel redox-sensing transcriptional regulator cyeR controls expression of an Old Yellow Enzyme family protein in Corynebacterium glutamicum. Microbiology 156:1335–1341
  35. Eilers A, Rüngeling E, Stündl UM, Gottschalk G (1999) Metabolism of 2,4,6-trinitrotoluene by the white-rot fungus Bjerkandera adusta DSM 3375 depends on cytochrome P-450. Appl Microbiol Biotechnol 53:75–80
  36. Eisentraeger A, Reifferscheid G, Dardenne F, Blust R, Schofer A (2007) Hazard characterization and identification of a former ammunition site using microarrays, bioassays, and chemical analysis. Environ Toxicol Chem 26:634–646
  37. Ek H, Dave G, Nilsson E, Sturve J, Birgersson G (2006) Fate and effects of 2,4,6-trinitrotoluene (TNT) from dumped ammunition in a field study with fish and invertebrates. Arch Environ Contam Toxicol 51:244–252
  38. El Fantroussi S, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8:268–275
  39. Eriksson J, Skyllberg U (2001) Binding of 2,4,6-trinitrotoluene and its degradation products in a soil organic matter two-phase system. J Environ Qual 30:2053–2061
  40. Eriksson J, Skyllberg U (2009) Aniline and 2,4,6-trinitrotoluene associate preferentially to low molecular weight fractions of dissolved soil organic matter. Environ Pollut 157:3010–3015
  41. Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W (2008) How a century of ammonia synthesis changed the world. Nat Geosci 1:636–639
  42. Esteve-Núñez A, Lucchesi G, Philipp B, Schink B, Ramos JL (2000) Respiration of 2,4,6-trinitrotoluene by Pseudomonas sp. strain JLR11. J Bacteriol 182:1352–1355
  43. Esteve-Núñez A, Caballero A, Ramos JL (2001) Biological degradation of 2,4,6-trinitrotoluene. Microbiol Mol Biol Rev 65:335–352
  44. Eyers L, Stenuit B, Agathos SN (2008) Denitration of 2,4,6-trinitrotoluene by Pseudomonas aeruginosa ESA-5 in the presence of ferrihydrite. Appl Microbiol Biotechnol 79:489–497
  45. Fernández M, Duque E, Pizarro-Tobías P, van Dillewijn P, Wittich R-M, Ramos JL (2009) Microbial responses to xenobiotic compounds. Identification of genes that allow Pseudomonas putida KT2440 to cope with 2,4,6-trinitrotoluene. Microb Biotechnol 2:287–294
  46. Fitzpatrick TB, Amrhein N, Macheroux P (2003) Characterization of YqjM, an Old Yellow Enzyme homolog from Bacillus subtilis involved in the oxidative stress response. J Biol Chem 278:19891–19897
  47. French CE, Rosser SJ, Davies GJ, Nicklin S, Bruce NC (1999) Biodegradation of explosives by transgenic plants expressing pentaerythritol tetranitrate reductase. Nat Biotechnol 17:491–494
  48. Fritsche W, Scheibner K, Herre A, Hofrichter M (2000) Fungal degradation of explosives: TNT and related nitroaromatic compounds. In: Spain JC, Hughes JB, Knackmuss HJ (eds) Biodegradation of nitroaromatic compounds and explosives. Lewis, New York, pp 213–238
  49. Frost J (2009) Manufacture of TATB and TNT from biosynthesized phloroglucinols. Weapons systems and platforms WP-1582. The Strategic Environmental Research and Development Program (SERDP), Arlington, VA
  50. Fryszkowska A, Toogood H, Sakuma M, Gardiner JM, Stephens GM, Scrutton NS (2009) Asymmetric reduction of activated alkenes by pentaerythritol tetranitrate reductase: specificity and control of stereochemical outcome by reaction optimisation. Adv Synth Catal 351:2976–2990
  51. Fukuhara K, Miyata N (1995) Chemical oxidation of nitrated polycyclic aromatic hydrocarbons: hydroxylation with superoxide anion radical. Chem Res Toxicol 8:27–33
  52. Fuller ME, Manning JF (1997) Aerobic Gram-positive and Gram-negative bacteria exhibit differential sensitivity to and transformation of 2,4,6-trinitrotoluene (TNT). Curr Microbiol 35:77–83
  53. Fuller M, McClay K, Hawari J, Paquet L, Malone T, Fox B, Steffan R (2009) Transformation of RDX and other energetic compounds by xenobiotic reductases XenA and XenB. Appl Microbiol Biotechnol 84:535–544
  54. Gallagher EM, Young LY, McGuinness LM, Kerkhof LJ (2010) Detection of 2,4,6-trinitrotoluene-utilizing anaerobic bacteria by 15N and 13C incorporation. Appl Environ Microbiol 76:1695–1698
  55. Gasperikova E, Smith JT, Morrison HF, Becker A, Kappler K (2009) UXO detection and identification based on intrinsic target polarizabilities—a case history. Geophysics 74:B1–B8
  56. George I, Eyers L, Stenuit B, Agathos SN (2008) Effect of 2,4,6-trinitrotoluene on soil bacterial communities. J Ind Microbiol Biotechnol 35:225–236
  57. George IF, Liles MR, Hartmann M, Ludwig W, Goodman RM, Agathos SN (2009) Changes in soil Acidobacteria communities after 2,4,6-trinitrotoluene contamination. FEMS Microbiol Lett 296:159–166
  58. Gerth A, Hebner A (2007) Risk assessment and remediation of military and ammunition sites. In: Marmiroli N, Samotokin B, Marmiroli M (eds) Advanced science and technology for biological decontamination of sites affected by chemical and radiological nuclear agents. NATO science series, vol 75. Springer, Heidelberg, pp 45–57
  59. González-Pérez MM, van Dillewijn P, Wittich RM, Ramos JL (2007) Escherichia coli has multiple enzymes that attack TNT and release nitrogen for growth. Environ Microbiol 9:1535–1540
  60. Grasso D, Cutlip MB, Garg R (1995) Modeling nucleophilic substitution reactions to investigate the feasibility of elution processes. Toxicol Environ Chem 50:73–96
  61. Griese JJ, Jakob PR, Schwarzinger S, Dobbek H (2006) Xenobiotic reductase a in the degradation of quinoline by Pseudomonas putida 86: physiological function, structure and mechanism of 8-hydroxycoumarin reduction. J Mol Biol 361:140–152
  62. Haïdour A, Ramos JL (1996) Identification of products resulting from the biological reduction of 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, and 2,6-dinitrotoluene by Pseudomonas sp. Environ Sci Technol 30:2365–2370
  63. Hannam JA, Dearing JA (2008) Mapping soil magnetic properties in Bosnia and Herzegovina for landmine clearance operations. Earth Planet Sci Lett 274:285–294
  64. Hannink N, Rosser SJ, French CE, Basran A, Murray JAH, Nicklin S, Bruce NC (2001) Phytodetoxification of TNT by transgenic plants expressing a bacterial nitroreductase. Nat Biotechnol 19:1168–1172
  65. Hannink NK, Rosser SJ, Bruce NC (2002) Phytoremediation of explosives. Crit Rev Plant Sci 21:511–538
  66. Hannink NK, Subramanian M, Rosser SJ, Basran A, Murray JAH, Shanks JV, Bruce NC (2007) Enhanced transformation of TNT by tobacco plants expressing a bacterial nitroreductase. Int J Phytorem 9:385–401
  67. Hansch C, Leo A, Taft RW (1991) A survey of Hammett substituent constants and resonance and field parameters. Chem Rev 91:165–195
  68. Harrison I, Vane CH (2010) Attenuation of TNT in seawater microcosms. Water Sci Technol 61:2531–2538
  69. Hawari J, Halasz A, Beaudet S, Paquet L, Ampleman G, Thiboutot S (1999) Biotransformation of 2,4,6-trinitrotoluene with Phanerochaete chrysosporium in agitated cultures at pH 4.5. Appl Environ Microbiol 65:2977–2986
  70. Hawari J, Beaudet S, Halasz A, Thiboutot S, Ampleman G (2000) Microbial degradation of explosives: biotransformation versus mineralization. Appl Microbiol Biotechnol 54:605–618
  71. Hay S, Pudney CR, Scrutton NS (2009) Structural and mechanistic aspects of flavoproteins: probes of hydrogen tunnelling. FEBS J 276:3930–3941
  72. Heiss G, Knackmuss H-J (2002) Bioelimination of trinitroaromatic compounds: immobilization versus mineralization. Curr Opin Microbiol 5:282–287
  73. Hewitt AD, Jenkins TF, Walsh ME, Walsh MR, Taylor S (2005) RDX and TNT residues from live-fire and blow-in-place detonations. Chemosphere 61:888–894
  74. Hofmann KW, Knackmuss H-J, Heiss G (2004) Nitrite elimination and hydrolytic ring cleavage in 2,4,6-trinitrophenol (picric acid) degradation. Appl Environ Microbiol 70:2854–2860
  75. Huang S, Lindahl PA, Wang C, Bennett GN, Rudolph FB, Hughes JB (2000) 2,4,6-trinitrotoluene reduction by carbon monoxide dehydrogenase from Clostridium thermoaceticum. Appl Environ Microbiol 66:1474–1478
  76. Hughes JB, Wang C, Yesland K, Richardson A, Bhadra R, Bennett G, Rudolph F (1998) Bamberger rearrangement during TNT metabolism by Clostridium acetobutylicum. Environ Sci Technol 32:494–500
  77. Irrazábal M, Hernández-Rivera SP, Briano JG (2009) Modeling of TNT transport from landmines: numerical approach. Chemosphere 77:546–551
  78. Jain MR, Zinjarde SS, Deobagkar DD, Deobagkar DN (2004) 2,4,6-trinitrotoluene transformation by a tropical marine yeast, Yarrowia lipolytica NCIM 3589. Mar Pollut Bull 49:783–788
  79. Jenkins TF, Hewitt AD, Walsh ME, Ranney TA, Ramsey CA, Grant CL, Bjella KL (2005) Representative sampling for energetic compounds at military training ranges. Environ Forensics 6:45–55
  80. Jerger DE, Woodhull P (2009) Applications and costs for biological treatment of explosives-contaminated soils in the U.S. In: Spain JC, Hughes JB, Knackmuss H-J (eds) Biodegradation of nitroaromatic compounds and explosives. Lewis, New York, pp 395–423
  81. Johnson J (2006) Technological mobilization and munitions production: comparative perspectives on Germany and Austria. In: MacLeod R, Johnson JA (eds) Frontline and factory: comparative perspectives on the chemical industry at war, 1914–1924. Springer, Heidelberg, pp 1–20
  82. Johnson GR, Smets BF, Spain JC (2001) Oxidative transformation of aminodinitrotoluene isomers by multicomponent dioxygenases. Appl Environ Microbiol 67:5460–5466
  83. Juhasz AL, Naidu R (2007) Explosives: fate, dynamics, and ecological impact in terrestrial and marine environments. In: Ware GW, Whitacre DM (eds) Reviews of environmental contamination and toxicology, vol 191. Springer, Heidelberg, pp 163–215
  84. Kaye JP, Hart SC (1997) Competition for nitrogen between plants and soil microorganisms. Trends Ecol Evol 12:139–143
  85. Keenan B, Wood T (2006) Orthric rieske dioxygenases for degrading mixtures of 2,4-dinitrotoluene/naphthalene and 2-amino-4,6-dinitrotoluene/4-amino-2,6-dinitrotoluene. Appl Microbiol Biotechnol 73:827–838
  86. Keenan BG, Leungsakul T, Smets BF, Mori M-A, Henderson DE, Wood TK (2005) Protein engineering of the archetypal nitroarene dioxygenase of Ralstonia sp. strain U2 for activity on aminonitrotoluenes and dinitrotoluenes through alpha-subunit residues leucine 225, phenylalanine 350, and glycine 407. J Bacteriol 187:3302–3310
  87. Keiluweit M, Kleber M (2009) Molecular-level interactions in soils and sediments: the role of aromatic π-systems. Environ Sci Technol 43:3421–3429
  88. Keiluweit M, Nico PS, Johnson MG, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon (Biochar). Environ Sci Technol 44:1247–1253
  89. Khan H, Barna T, Bruce NC, Munro AW, Leys D, Scrutton NS (2005) Proton transfer in the oxidative half-reaction of pentaerythritol tetranitrate reductase. FEBS J 272:4660–4671
  90. Kim H.-Y., Song H.-G., Transformation and mineralization of 2,4,6-trinitrotoluene by the white rot fungus Irpex lacteus, 10.1007/s00253-002-1211-5
  91. Kitzing K, Fitzpatrick TB, Wilken C, Sawa J, Bourenkov GP, Macheroux P, Clausen T (2005) The 1.3 Å crystal structure of the flavoprotein YqjM reveals a novel class of old yellow enzymes. J Biol Chem 280:27904–27913
  92. Kubata BK, Duszenko M, Martin KS, Urade Y (2007) Molecular basis for prostaglandin production in hosts and parasites. Trends Parasitol 23:325–331
  93. Kurumata Mami, Takahashi Misa, Sakamoto Atsushi, Ramos Juan L., Nepovim Ales, Vanek Tomas, Hirata Toshifumi, Morikawa Hiromichi, Tolerance to, and Uptake and Degradation of 2,4,6-Trinitrotoluene (TNT) are Enhanced by the Expression of a Bacterial Nitroreductase Gene in Arabidopsis thaliana, 10.1515/znc-2005-3-412
  94. Kutty R, Bennett G (2005) Biochemical characterization of trinitrotoluene transforming oxygen-insensitive nitroreductases from Clostridium acetobutylicum ATCC 824. Arch Microbiol 184:158–167
  95. Kwok TJ, Jayasuriya K, Damavarapu R, Brodman BW (1994) Application of H-ZSM-5 zeolite for regioselective mononitration of toluene. J Org Chem 59:4939–4942
  96. Lee B, Jeong S-W (2009) Effects of additives on 2,4,6-trinitrotoluene (TNT) removal and its mineralization in aqueous solution by gamma irradiation. J Hazard Mater 165:435–440
  97. Lehmann J (2007) A handful of carbon. Nature 447:143–144
  98. Lenke H, Achtnich C, Knackmuss H-J (2000) Perspectives of bioelimination of polynitroaromatic compounds. In: Spain JC, Hughes JB, Knackmuss H-J (eds) Biodegradation of nitroaromatic compounds and explosives. Lewis, New York, pp 91–126
  99. Lewis TA, Newcombe DA, Crawford RL (2004) Bioremediation of soils contaminated with explosives. J Environ Manag 70:291–307
  100. Lewis J, Martel R, Trepanier L, Ampleman G, Thiboutot S (2009) Quantifying the transport of energetic materials in unsaturated sediments from cracked unexploded ordnance. J Environ Qual 38:2229–2236
  101. MacDonald JA (2001) Cleaning up unexploded ordnance. Environ Sci Technol 35:372A–376A
  102. Macdonald JA, Small MJ (2006) Assessing sites contaminated with unexploded ordnance: statistical modeling of ordnance spatial distribution. Environ Sci Technol 40:931–938
  103. MacDonald JA, Small MJ, Morgan MG (2009) Quantifying the risks of unexploded ordnance at closed military bases. Environ Sci Technol 43:259–265
  104. Machlis GE, Hanson T (2008) Warfare ecology. Bioscience 58:729–736
  105. Madsen EL (1998) Epistemology in environmental microbiology. Environ Sci Technol 32:429–439
  106. Makris KC, Sarkar D, Datta R (2010) Coupling indigenous biostimulation and phytoremediation for the restoration of 2,4,6-trinitrotoluene-contaminated sites. J Environ Monit 12:399–403
  107. Martel R, Mailloux M, Gabriel U, Lefebvre R, Thiboutot S, Ampleman G (2009) Behavior of energetic materials in ground water at an anti-tank range. J Environ Qual 38:75–92
  108. Martin JL, Comfort SD, Shea PJ, Kokjohn TA, Drijber RA (1997) Denitration of 2,4,6-trinitrotoluene (TNT) by Pseudomonas savastanoi. Can J Microbiol 43:447–455
  109. McNeill J (2000) Something new under the sun: an environmental history of the twentieth-century world. Allen Lane The Penguin Press, London
  110. Meyers S, Shanley ES (1990) Industrial explosives—a brief history of their development and use. J Hazard Mater 23:183–201
  111. Michels J, Gottschalk G (1994) Inhibition of the lignin peroxidase of Phanerochaete chrysosporium by hydroxylamino-dinitrotoluene, an early intermediate in the degradation of 2,4,6-trinitrotoluene. Appl Environ Microbiol 60:187–194
  112. Millar RW, Arber AW, Hamid J, Endsor RM (2007) Elimination of redwater formation from TNT manufacture. Project WP-1408. The Strategic Environmental Research & Development Program (SERDP). Arlington
  113. Monteil-Rivera F, Deschamps S, Ampleman G, Thiboutot S, Hawari J (2010) Dissolution of a new explosive formulation containing TNT and HMX: comparison with octol. J Hazard Mater 174:281–288
  114. Mueller NJ, Stueckler C, Hauer B, Baudendistel N, Housden H, Bruce NC, Faber K (2010) The substrate spectra of pentaerythritol tetranitrate reductase, morphinone reductase, N-ethylmaleimide reductase and estrogen-binding protein in the asymmetric bioreduction of activated alkenes. Adv Synth Catal 352:387–394
  115. Naeem S (2009) Ecology: gini in the bottle. Nature 458:579–580
  116. Nga DP, Altenbuchner J, Heiss GS (2004) NpdR, a repressor involved in 2,4,6-trinitrophenol degradation in Rhodococcus opacus HL PM-1. J Bacteriol 186:98–103
  117. Nivinskas H, Koder RL, Anusevicius Z, Sarlauskas J, Miller A-F, Cenas N (2001) Quantitative structure-activity relationships in two-electron reduction of nitroaromatic compounds by Enterobacter cloacae NAD(P)H:nitroreductase. Arch Biochem Biophys 385:170–178
  118. Nivinskas H, Sarlauskas J, Anusevicius Z, Toogood HS, Scrutton NS, Cenas N (2008) Reduction of aliphatic nitroesters and N-nitramines by Enterobacter cloacae PB2 pentaerythritol tetranitrate reductase. FEBS J 275:6192–6203
  119. Nyanhongo GS, Aichernig N, Ortner M, Steiner W, Guebitz GM (2009) Incorporation of 2,4,6-trinitrotoluene (TNT) transforming bacteria into explosive formulations. J Hazard Mater 165:285–290
  120. Oh B-T, Sarath G, Shea PJ, Drijber RA, Comfort SD (2000) Rapid spectrophotometric determination of 2,4,6-trinitrotoluene in a Pseudomonas enzyme assay. J Microbiol Meth 42:149–158
  121. O'Loughlin J (2009) Postconflict geographies. In: Rob K, Nigel T (eds) International encyclopedia of human geography. Elsevier, Amsterdam, pp 334–338
  122. Pak JW, Knoke KL, Noguera DR, Fox BG, Chambliss GH (2000) Transformation of 2,4,6-trinitrotoluene by purified xenobiotic reductase B from Pseudomonas fluorescens I-C. Appl Environ Microbiol 66:4742–4750
  123. Pennington JC, Hayes CA, Yost S, Crutcher TA, Berry TE, Clarke JU, Bishop MJ (2008) Explosive residues from blow-in-place detonations of artillery munitions. Soil Sed Contam 17:163–180
  124. Persson P-A, Holmberg R, Lee J (1993) Rock blasting and explosives engineering. CRC, Baca Raton
  125. Perumbakkam S, Mitchell E, Morrie Craig A (2010) Changes to the rumen bacterial population of sheep with the addition of 2,4,6-trinitrotoluene to their diet. Antonie Leeuwenhoek. doi: 10.1007/s10482-010-9481-x
  126. Qasim M, Gorb L, Magers D, Honea P, Leszczynski J, Moore B, Taylor L, Middleton M (2009) Structure and reactivity of TNT and related species: application of spectroscopic approaches and quantum-chemical approximations toward understanding transformation mechanisms. J Hazard Mater 167:154–163
  127. Qu X, Xiao L, Zhu D (2008) Site-specific adsorption of 1,3-dinitrobenzene to bacterial surfaces: a mechanism of n-π electron-donor-acceptor interactions. J Environ Qual 37:824–829
  128. Rappert B, Moyes R (2010) Enhancing the protection of civilians from armed conflict: precautionary lessons. Med Confl Surviv 26:24–47
  129. Rho D, Hodgson J, Thiboutot S, Ampleman G, Hawari J (2001) Transformation of 2,4,6-trinitrotoluene (TNT) by immobilized Phanerochaete chrysosporium under fed-batch and continuous TNT feeding conditions. Biotechnol Bioeng 73:271–281
  130. Riefler RG, Smets BF (2000) Enzymatic reduction of 2,4,6-trinitrotoluene and related nitroarenes: kinetics linked to one-electron redox potentials. Environ Sci Technol 34:3900–3906
  131. Riefler RG, Smets BF (2002) NAD(P)H:Flavin mononucleotide oxidoreductase inactivation during 2,4,6-trinitrotoluene reduction. Appl Environ Microbiol 68:1690–1696
  132. Rieger P-G, Sinnwell V, Preuss A, Francke W, Knackmuss H-J (1999) Hydride-Meisenheimer complex formation and protonation as key reactions of 2,4,6-trinitrophenol biodegradation by Rhodococcus erythropolis. J Bacteriol 181:1189–1195
  133. Rodgers JD, Bunce NJ (2001) Treatment methods for the remediation of nitroaromatic explosives. Water Res 35:2101–2111
  134. Roldán MD, Pérez-Reinado E, Castillo F, Moreno-Vivián C (2008) Reduction of polynitroaromatic compounds: the bacterial nitroreductases. FEMS Microbiol Rev 32:474–500
  135. Rylott EL, Bruce NC (2009) Plants disarm soil: engineering plants for the phytoremediation of explosives. Trends Biotechnol 27:73–81
  136. Schaller F, Biesgen C, Müssig C, Altmann T, Weiler EW (2000) 12-oxophytodienoate reductase 3 (OPR3) is the isoenzyme involved in jasmonate biosynthesis. Planta 210:979–984
  137. Schmitz C, Goebel I, Wagner S, Vomberg A, Klinner U (2000) Competition between n-alkane-assimilating yeasts and bacteria during colonization of sandy soil microcosms. Appl Microbiol Biotechnol 54:126–132
  138. Schwarzenbach, RP, Gschwend, PM, Imboden, DM (2003) Environmental organic chemistry. John Wiley & Sons, Inc., Hoboken, NJ
  139. Sembries S, Crawford R (1997) Production of Clostridium bifermentans spores as inoculum for bioremediation of nitroaromatic contaminants. Appl Environ Microbiol 63:2100–2104
  140. Shah MM (2000) Method for digesting a nitro-bearing explosive compound. US patent 6118039
  141. Shelley MD, Autenrieth RL, Wild JR, Dale BE (1996) Thermodynamic analysis of trinitrotoluene biodegradation and mineralization pathways. Biotechnol Bioeng 51:198–205
  142. Sheremata TW, Hawari J (2000) Cyclodextrins for desorption and solubilization of 2,4,6-trinitrotoluene and its metabolites from soils. Environ Sci Technol 34:3462–3468
  143. Singh N, Hennecke D, Hoerner J, Koerdel W, Schaeffer A (2008) Sorption-desorption of trinitrotoluene in soils: effect of saturating metal cations. Bull Environ Contam Toxicol 80:443–446
  144. Singh N, Berns AE, Hennecke D, Hoerner J, Koerdel W, Schaeffer A (2010) Effect of soil organic matter chemistry on sorption of trinitrotoluene and 2,4-dinitrotoluene. J Hazard Mater 173:343–348
  145. Snellinx Z, Nepovim A, Taghavi S, Vangronsveld J, Vanek T, van der Lelie D (2002) Biological remediation of explosives and related nitroaromatic compounds. Environ Sci Pollut Res 9:48–61
  146. Spiegelhauer O, Mende S, Dickert F, Knauer SH, Ullmann GM, Dobbek H (2010) Cysteine as a modulator residue in the active site of xenobiotic reductase A: a structural, thermodynamic and kinetic study. J Mol Biol 398:66–82
  147. Stenuit B, Eyers L, El Fantroussi S, Agathos SN (2005) Promising strategies for the mineralisation of 2,4,6-trinitrotoluene. Rev Environ Sci Biotechnol 4:39–60
  148. Stenuit B, Eyers L, Rozenberg R, Habib-Jiwan J-L, Agathos SN (2006) Aerobic growth of Escherichia coli with 2,4,6-trinitrotoluene (TNT) as the sole nitrogen source and evidence of TNT denitration by whole cells and cell-free extracts. Appl Environ Microbiol 72:7945–7948
  149. Stenuit B, Eyers L, Rozenberg R, Habib-Jiwan J-L, Matthijs S, Cornelis P, Agathos SN (2009) Denitration of 2,4,6-trinitrotoluene in aqueous solutions using small-molecular-weight catalyst(s) secreted by Pseudomonas aeruginosa ESA-5. Environ Sci Technol 43:2011–2017
  150. Talawar MB, Sivabalan R, Mukundan T, Muthurajan H, Sikder AK, Gandhe BR, Rao AS (2009) Environmentally compatible next generation green energetic materials (GEMs). J Hazard Mater 161:589–607
  151. Taylor S, Lever JH, Fadden J, Perron N, Packer B (2009) Outdoor weathering and dissolution of TNT and tritonal. Chemosphere 77:1338–1345
  152. Travis ER, Hannink NK, van der Gast CJ, Thompson IP, Rosser SJ, Bruce NC (2007) Impact of transgenic tobacco on trinitrotoluene (TNT) contaminated soil community. Environ Sci Technol 41:5854–5861
  153. Travis ER, Bruce NC, Rosser SJ (2008a) Microbial and plant ecology of a long-term TNT-contaminated site. Environ Pollut 153:119–126
  154. Travis ER, Bruce NC, Rosser SJ (2008b) Short term exposure to elevated trinitrotoluene concentrations induced structural and functional changes in the soil bacterial community. Environ Pollut 153:432–439
  155. Van Aken B (2009) Transgenic plants for enhanced phytoremediation of toxic explosives. Curr Opin Biotechnol 20:231–236
  156. Van Aken B, Agathos SN (2001) Biodegradation of nitro-substituted explosives by white-rot fungi: a mechanistic approach. Adv Appl Microbiol 48:1–77
  157. Van Aken B, Agathos SN (2002) Implication of manganese (III), oxalate, and oxygen in the degradation of nitroaromatic compounds by manganese peroxidase (MnP). Appl Microbiol Biotechnol 58:345–351
  158. Van Aken B, Cameron MD, Stahl JD, Plumat A, Naveau H, Aust SD, Agathos SN (2000) Glutathione-mediated mineralization of 14C-labeled 2-amino-4,6-dinitrotoluene by manganese-dependent peroxidase H5 from the white-rot fungus Phanerochaete chrysosporium. Appl Microbiol Biotechnol 54:659–664
  159. van der Meer JR, Belkin S (2010) Where microbiology meets microengineering: design and applications of reporter bacteria. Nat Rev Microbiol 8:511–522
  160. van Dillewijn P, Caballero A, Paz JA, González-Pérez MM, Oliva JM, Ramos JL (2007) Bioremediation of 2,4,6-trinitrotoluene under field conditions. Environ Sci Technol 41:1378–1383
  161. van Dillewijn P, Couselo JL, Corredoira E, Delgado A, Wittich R-M, Ballester A, Ramos JL (2008a) Bioremediation of 2,4,6-trinitrotoluene by bacterial nitroreductase expressing transgenic aspen. Environ Sci Technol 42:7405–7410
  162. van Dillewijn P, Wittich R-M, Caballero A, Ramos J-L (2008b) Subfunctionality of hydride transferases of the Old Yellow Enzyme family of flavoproteins of Pseudomonas putida. Appl Environ Microbiol 74:6703–6708
  163. van Dillewijn P, Wittich R-M, Caballero A, Ramos J-L (2008c) Type II hydride transferases from different microorganisms yield nitrite and diarylamines from polynitroaromatic compounds. Appl Environ Microbiol 74:6820–6823
  164. Verheijen F, Jeffery S, Bastos AC, van der Velde M, Diafas I (2009) Biochar application to soils. A critical scientific review of effects on soil properties, processes and functions. EUR 24099 EN. Office for the Official Publications of the European Communities, Luxemburg
  165. Vorbeck C, Lenke H, Fischer P, Knackmuss H J, Identification of a hydride-Meisenheimer complex as a metabolite of 2,4,6-trinitrotoluene by a Mycobacterium strain., 10.1128/jb.176.3.932-934.1994
  166. Vorbeck C, Lenke H, Fischer P, Spain JC, Knackmuss H-J (1998) Initial reductive reactions in aerobic microbial metabolism of 2,4,6-trinitrotoluene. Appl Environ Microbiol 64:246–252
  167. Walsh ME, Taylor S, Hewitt AD, Walsh MR, Ramsey CA, Collins CM (2010) Field observations of the persistence of Comp B explosives residues in a salt marsh impact area. Chemosphere 78:467–473
  168. Wang Y, Kern SE, Newman DK (2010) Endogenous phenazine antibiotics promote anaerobic survival of Pseudomonas aeruginosa via extracellular electron transfer. J Bacteriol 192:365–369
  169. Watanabe K, Manefield M, Lee M, Kouzuma A (2009) Electron shuttles in biotechnology. Curr Opin Biotechnol 20:633–641
  170. Weekers F, Jacques P, Springael D, Mergeay M, Diels L, Thonart P (1999) Improving the catabolic functions of desiccation-tolerant soil bacteria. Appl Biochem Biotechnol 77:251–266
  171. Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009) Phytoremediation: plant-endophyte partnerships take the challenge. Curr Opin Biotechnol 20:248–254
  172. Widdel F., Musat F., Energetic and Other Quantitative Aspects of Microbial Hydrocarbon Utilization, Handbook of Hydrocarbon and Lipid Microbiology (2010) ISBN:9783540775843 p.729-763, 10.1007/978-3-540-77587-4_57
  173. Williams Richard E., Bruce Neil C., ‘New uses for an Old Enzyme’ – the Old Yellow Enzyme family of flavoenzymes, 10.1099/00221287-148-6-1607
  174. Williams RE, Rathbone DA, Scrutton NS, Bruce NC (2004) Biotransformation of explosives by the Old Yellow Enzyme family of flavoproteins. Appl Environ Microbiol 70:3566–3574
  175. Wittebolle L, Marzorati M, Clement L, Balloi A, Daffonchio D, Heylen K, De Vos P, Verstraete W, Boon N (2009) Initial community evenness favours functionality under selective stress. Nature 458:623–626
  176. Wittich R-M, Haïdour A, Van Dillewijn P, Ramos J-L (2008) OYE flavoprotein reductases initiate the condensation of TNT-derived intermediates to secondary diarylamines and nitrite. Environ Sci Technol 42:734–739
  177. Wittich R-M, Ramos JL, van Dillewijn P (2009) Microorganisms and explosives: mechanisms of nitrogen release from TNT for use as an N-source for growth. Environ Sci Technol 43:2773–2776
  178. Xue SK, Iskandar IK, Selim HM (1995) Adsorption-desorption of 2,4,6-trinitrotoluene and hexahydro-1,3,5-trinitro-1,3,5-triazine in soils. Soil Sci 160:317–327
  179. Zaripov SA, Naumov AV, Abdrakhmanova JF, Garusov AV, Naumova RP (2002) Models of 2,4,6-trinitrotoluene (TNT) initial conversion by yeasts. FEMS Microbiol Lett 217:213–217
  180. Zhang C, Hughes JB (2004) Bacterial energetics, stoichiometry, and kinetic modeling of 2,4-dinitrotoluene biodegradation in a batch respirometer. Environ Toxicol Chem 23:2799–2806
  181. Zhang C, Hughes JB, Nishino SF, Spain JC (2000) Slurry-phase biological treatment of 2,4-dinitrotoluene and 2,6-dinitrotoluene: role of bioaugmentation and effects of high dinitrotoluene concentrations. Environ Sci Technol 34:2810–2816
  182. Ziganshin AM, Gerlach R, Borch T, Naumov AV, Naumova RP (2007) Production of eight different hydride complexes and nitrite release from 2,4,6-trinitrotoluene by Yarrowia lipolytica. Appl Environ Microbiol 73:7898–7905
  183. Ziganshin A, Gerlach R, Naumenko E, Naumova R (2010a) Aerobic degradation of 2,4,6-trinitrotoluene by the yeast strain Geotrichum candidum AN-Z4. Microbiol (Russia) 79:178–183
  184. Ziganshin AM, Naumova RP, Pannier AJ, Gerlach R (2010b) Influence of pH on 2,4,6-trinitrotoluene degradation by Yarrowia lipolytica. Chemosphere 79:426–433