User menu

From the neuromatrix to the pain matrix (and back)

Bibliographic reference Iannetti, Gian Domenico ; Mouraux, André. From the neuromatrix to the pain matrix (and back). In: Experimental Brain Research, Vol. 205, no. 1, p. 1-12 (2010)
Permanent URL
  1. Albe-Fessar D., Berkley K.J., Kruger L., Ralston H.J., Willis W.D., Diencephalic mechanisms of pain sensation, 10.1016/0165-0173(85)90013-x
  2. Andersson SA, Rydenhag B (1985) Cortical nociceptive systems. Philos Trans R Soc Lond B Biol Sci 308:347–359
  3. Apkarian AV, Bushnell MC, Treede RD, Zubieta JK (2005) Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 9:463–484
  4. Arendt-Nielsen L (1994) Characteristics, detection, and modulation of laser-evoked vertex potentials. Acta Anaesthesiol Scand Suppl 101:7–44
  5. Avenanti Alessio, Bueti Domenica, Galati Gaspare, Aglioti Salvatore M, Transcranial magnetic stimulation highlights the sensorimotor side of empathy for pain, 10.1038/nn1481
  6. Bancaud J, Talairach J, Geier S, Bonis A, Trottier S, Manrique M (1976) Behavioral manifestations induced by electric stimulation of the anterior cingulate gyrus in man. Rev Neurol (Paris) 132:705–724
  7. Beckmann CF, Smith SA (2004) Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans Med Imaging 23:137–152
  8. Beydoun A, Morrow TJ, Shen JF, Casey KL (1993) Variability of laser-evoked potentials: attention, arousal and lateralized differences. Electroencephalogr Clin Neurophysiol 88:173–181
  9. Boly M, Faymonville ME, Schnakers C, Peigneux P, Lambermont B, Phillips C, Lancellotti P, Luxen A, Lamy M, Moonen G, Maquet P, Laureys S (2008) Perception of pain in the minimally conscious state with PET activation: an observational study. Lancet Neurol 7:1013–1020
  10. Bornhovd K, Quante M, Glauche V, Bromm B, Weiller C, Buchel C (2002) Painful stimuli evoke different stimulus-response functions in the amygdala, prefrontal, insula and somatosensory cortex: a single-trial fMRI study. Brain 125:1326–1336
  11. Bromm B, Treede RD (1987) Human cerebral potentials evoked by CO2 laser stimuli causing pain. Exp Brain Res 67:153–162
  12. Brooks J, Tracey I (2005) From nociception to pain perception: imaging the spinal and supraspinal pathways. J Anat 207:19–33
  13. Buchel C, Bornhovd K, Quante M, Glauche V, Bromm B, Weiller C (2002) Dissociable neural responses related to pain intensity, stimulus intensity, and stimulus awareness within the anterior cingulate cortex: a parametric single-trial laser functional magnetic resonance imaging study. J Neurosci 22:970–976
  14. Budd TW, Michie PT (1994) Facilitation of the N1 peak of the auditory ERP at short stimulus intervals. Neuroreport 5:2513–2516
  15. Bushnell MC, Apkarian AV (2005) Representation of pain in the brain. In: McMahon S, Koltzenburg M (eds) Textbook of pain, 5th edn. Churchill Livingstone, Philadelphia, pp 267–289
  16. Carmon A., Mor J., Goldberg J., Evoked cerebral responses to noxious thermal stimuli in humans, 10.1007/bf00237330
  17. Carmon A., Dotan Y., Sarne Y., Correlation of subjective pain experience with cerebral evoked responses to noxious thermal stimulations, 10.1007/bf00235566
  18. Chapman CR, Chen AC, Colpitts YM, Martin RW (1981a) Sensory decision theory describes evoked potentials in pain discrimination. Psychophysiology 18:114–120
  19. Chapman CR, Colpitts YH, Mayeno JK, Gagliardi GJ (1981b) Rate of stimulus repetition changes evoked potential amplitude: dental and auditory modalities compared. Exp Brain Res 43:246–252
  20. Charlesworth G, Soryal I, Smith S, Sisodiya SM (2009) Acute, localised paroxysmal pain as the initial manifestation of focal seizures: a case report and a brief review of the literature. Pain 141:300–305
  21. Cheng Y, Lin CP, Liu HL, Hsu YY, Lim KE, Hung D, Decety J (2007) Expertise modulates the perception of pain in others. Curr Biol 17:1708–1713
  22. Clark JA, Brown CA, Jones AK, El-Deredy W (2008) Dissociating nociceptive modulation by the duration of pain anticipation from unpredictability in the timing of pain. Clin Neurophysiol 119:2870–2878
  23. Coghill RC, Sang CN, Maisog JM, Iadarola MJ (1999) Pain intensity processing within the human brain: a bilateral, distributed mechanism. J Neurophysiol 82:1934–1943
  24. Corkin S., Hebben N., Subjective estimates of chronic pain before and after psychosurgery or treatment in a pain unit : , 10.1016/0304-3959(81)90390-0
  25. Craig AD (2003) Pain mechanisms: labeled lines versus convergence in central processing. Annu Rev Neurosci 26:1–30
  26. Craig AD, Bushnell MC, Zhang ET, Blomqvist A (1994) A thalamic nucleus specific for pain and temperature sensation. Nature 372:770–773
  27. Derbyshire SW, Jones AK, Gyulai F, Clark S, Townsend D, Firestone LL (1997) Pain processing during three levels of noxious stimulation produces differential patterns of central activity. Pain 73:431–445
  28. Descartes R (1649) Les passions de l’âme. L. Elzevir, Amsterdam
  29. Dillmann J, Miltner WH, Weiss T (2000) The influence of semantic priming on event-related potentials to painful laser-heat stimuli in humans. Neurosci Lett 284:53–56
  30. Dong WK, Chudler EH, Sugiyama K, Roberts VJ, Hayashi T (1994) Somatosensory, multisensory, and task-related neurons in cortical area 7b (PF) of unanesthetized monkeys. J Neurophysiol 72:542–564
  31. Downar J, Crawley AP, Mikulis DJ, Davis KD (2000) A multimodal cortical network for the detection of changes in the sensory environment. Nat Neurosci 3:277–283
  32. Downar J, Mikulis DJ, Davis KD (2003) Neural correlates of the prolonged salience of painful stimulation. Neuroimage 20:1540–1551
  33. Dum RP, Levinthal DJ, Strick PL (2009) The spinothalamic system targets motor and sensory areas in the cerebral cortex of monkeys. J Neurosci 29:14223–14235
  34. Eisenberger NI, Lieberman MD, Williams KD (2003) Does rejection hurt? An FMRI study of social exclusion. Science 302:290–292
  35. Fecteau JH, Munoz DP (2006) Salience, relevance, and firing: a priority map for target selection. Trends Cogn Sci 10:382–390
  36. Foltz EL, White LE Jr (1962) Pain “relief” by frontal cingulumotomy. J Neurosurg 19:89–100
  37. Foltz EL, White LE (1968) The role of rostral cingulumotomy in “pain” relief. Int J Neurol 6:353–373
  38. Frot M, Magnin M, Mauguiere F, Garcia-Larrea L (2007) Human SII and posterior insula differently encode thermal laser stimuli. Cereb Cortex 17:610–620
  39. Frot M, Mauguiere F, Magnin M, Garcia-Larrea L (2008) Parallel processing of nociceptive A-delta inputs in SII and midcingulate cortex in humans. J Neurosci 28:944–952
  40. Garcia-Larrea L, Peyron R, Laurent B, Mauguiere F (1997) Association and dissociation between laser-evoked potentials and pain perception. Neuroreport 8:3785–3789
  41. Garcia-Larrea L, Convers P, Magnin M, Andre-Obadia N, Peyron R, Laurent B, Mauguiere F (2002) Laser-evoked potential abnormalities in central pain patients: the influence of spontaneous and provoked pain. Brain 125:2766–2781
  42. Garcia-Larrea L, Frot M, Valeriani M (2003) Brain generators of laser-evoked potentials: from dipoles to functional significance. Neurophysiol Clin 33:279–292
  43. Godinho F, Magnin M, Frot M, Perchet C, Garcia-Larrea L (2006) Emotional modulation of pain: is it the sensation or what we recall? J Neurosci 26:11454–11461
  44. Gracely RH, Geisser ME, Giesecke T, Grant MA, Petzke F, Williams DA, Clauw DJ (2004) Pain catastrophizing and neural responses to pain among persons with fibromyalgia. Brain 127:835–843
  45. Greenspan JD, Winfield JA (1992) Reversible pain and tactile deficits associated with a cerebral tumor compressing the posterior insula and parietal operculum. Pain 50:29–39
  46. Greenspan JD, Lee RR, Lenz FA (1999) Pain sensitivity alterations as a function of lesion location in the parasylvian cortex. Pain 81:273–282
  47. Head H, Holmes G (1911) Sensory disturbances from cerebral lesions. Brain 34:102–254
  48. Hofbauer RK, Rainville P, Duncan GH, Bushnell MC (2001) Cortical representation of the sensory dimension of pain. J Neurophysiol 86:402–411
  49. Hubel D. H., Wiesel T. N., Receptive fields and functional architecture of monkey striate cortex, 10.1113/jphysiol.1968.sp008455
  50. Hurt RW, Ballantine HT Jr (1973) Stereotactic anterior cingulate lesions for persistent pain: a report on 68 cases. Clin Neurosurg 21:334–351
  51. Hutchison WD, Davis KD, Lozano AM, Tasker RR, Dostrovsky JO (1999) Pain-related neurons in the human cingulate cortex. Nat Neurosci 2:403–405
  52. Iannetti GD, Zambreanu L, Cruccu G, Tracey I (2005) Operculoinsular cortex encodes pain intensity at the earliest stages of cortical processing as indicated by amplitude of laser-evoked potentials in humans. Neuroscience 131:199–208
  53. Iannetti GD, Hughes NP, Lee MC, Mouraux A (2008) Determinants of laser-evoked EEG responses: pain perception or stimulus saliency? J Neurophysiol 100:815–828
  54. Imig TJ, Adrian HO (1977) Binaural columns in the primary field (A1) of cat auditory cortex. Brain Res 138:241–257
  55. Ingvar M (1999) Pain and functional imaging. Philos Trans R Soc Lond B Biol Sci 354:1347–1358
  56. Ingvar M, Hsieg J-C (1999) The image of pain. In: Wall PD, Melzack R (eds) The textbook of pain, 4th edn. Churchill Livingstone, Edinburgh
  57. Isnard J, Guenot M, Ostrowsky K, Sindou M, Mauguiere F (2000) The role of the insular cortex in temporal lobe epilepsy. Ann Neurol 48:614–623
  58. Isnard J, Guenot M, Sindou M, Mauguiere F (2004) Clinical manifestations of insular lobe seizures: a stereo-electroencephalographic study. Epilepsia 45:1079–1090
  59. Itti L, Koch C (2001) Computational modelling of visual attention. Nat Rev Neurosci 2:194–203
  60. Jackson PL, Meltzoff AN, Decety J (2005) How do we perceive the pain of others? A window into the neural processes involved in empathy. Neuroimage 24:771–779
  61. Jones A (1998a) The pain matrix and neuropathic pain. Brain 121(Pt 5):783–784
  62. Jones EG (1998b) Viewpoint: the core and matrix of thalamic organization. Neuroscience 85:331–345
  63. Jones EG (2002) Thalamic circuitry and thalamocortical synchrony. Philos Trans R Soc Lond B Biol Sci 357:1659–1673
  64. Kaas JH, Collins CE (2001) The organization of sensory cortex. Curr Opin Neurobiol 11:498–504
  65. Kakigi R, Shibasaki H (1992) Mechanisms of pain relief by vibration and movement. J Neurol Neurosurg Psychiatry 55:282–286
  66. Kakigi R, Inui K, Tran DT, Qiu Y, Wang X, Watanabe S, Hoshiyama M (2004) Human brain processing and central mechanisms of pain as observed by electro- and magneto-encephalography. J Chin Med Assoc 67:377–386
  67. Kandel E, Schwartz J, Jessel T (2000) Principles of neural science. McGraw, Hill
  68. Kayser C, Petkov CI, Lippert M, Logothetis NK (2005) Mechanisms for allocating auditory attention: an auditory saliency map. Curr Biol 15:1943–1947
  69. Kenshalo DR, Douglass DK (1995) The role of the cerebral cortex in the experience of pain. In: Bromm B, Desmedt JE (eds) Pain and the brain: from nociception to cognition. Raven Press, New York, pp 21–34
  70. Kenshalo DR Jr, Isensee O (1983) Responses of primate SI cortical neurons to noxious stimuli. J Neurophysiol 50:1479–1496
  71. Kenshalo DR, Iwata K, Sholas M, Thomas DA (2000) Response properties and organization of nociceptive neurons in area 1 of monkey primary somatosensory cortex. J Neurophysiol 84:719–729
  72. Knudsen EI (2007) Fundamental components of attention. Annu Rev Neurosci 30:57–78
  73. Kunde V, Treede RD (1993) Topography of middle-latency somatosensory evoked potentials following painful laser stimuli and non-painful electrical stimuli. Electroencephalogr Clin Neurophysiol 88:280–289
  74. Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R et al (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89:5675–5679
  75. Lee MC, Mouraux A, Iannetti GD (2009) Characterizing the cortical activity through which pain emerges from nociception. J Neurosci 29:7909–7916
  76. Legrain V, Guerit JM, Bruyer R, Plaghki L (2002) Attentional modulation of the nociceptive processing into the human brain: selective spatial attention, probability of stimulus occurrence, and target detection effects on laser evoked potentials. Pain 99:21–39
  77. Legrain V, Guerit JM, Bruyer R, Plaghki L (2003) Electrophysiological correlates of attentional orientation in humans to strong intensity deviant nociceptive stimuli, inside and outside the focus of spatial attention. Neurosci Lett 339:107–110
  78. Legrain V, Damme SV, Eccleston C, Davis KD, Seminowicz DA, Crombez G (2009a) A neurocognitive model of attention to pain: behavioral and neuroimaging evidence. Pain 144:230–232
  79. Legrain V, Perchet C, Garcia-Larrea L (2009b) Involuntary orienting of attention to nociceptive events: neural and behavioral signatures. J Neurophysiol 102:2423–2434
  80. Logothetis NK (2008) What we can do and what we cannot do with fMRI. Nature 453:869–878
  81. Loveless N, Hari R, Hamalainen M, Tiihonen J (1989) Evoked responses of human auditory cortex may be enhanced by preceding stimuli. Electroencephalogr Clin Neurophysiol 74:217–227
  82. Lui F, Duzzi D, Corradini M, Serafini M, Baraldi P, Porro CA (2008) Touch or pain? Spatio-temporal patterns of cortical fMRI activity following brief mechanical stimuli. Pain 138:362–374
  83. Mauguiere F, Courjon J (1978) Somatosensory epilepsy. A review of 127 cases. Brain 101:307–332
  84. Melzack Ronald, Phantom limbs, the self and the brain (the D. O. Hebb Memorial Lecture)., 10.1037/h0079793
  85. Melzack R (2005) Evolution of the neuromatrix theory of pain. The Prithvi Raj Lecture: presented at the third World Congress of World Institute of Pain, Barcelona 2004. Pain Pract 5:85–94
  86. Mesulam MM (1998) From sensation to cognition. Brain 121(Pt 6):1013–1052
  87. Miller G (2009) Neuroscience. Brain scans of pain raise questions for the law. Science 323:195
  88. Moisset X, Bouhassira D (2007) Brain imaging of neuropathic pain. Neuroimage 37(1):S80–S88
  89. Mountcastle VB (1957) Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol 20:408–434
  90. Mountcastle VB, Davies PW, Berman AL (1957) Response properties of neurons of cat’s somatic sensory cortex to peripheral stimuli. J Neurophysiol 20:374–407
  91. Mouraux A, Iannetti GD (2008) A review of the evidence against the “first come first served” hypothesis. Comment on Truini et al. [Pain 2007; 131:43–47]. Pain 136:219–221; author reply 222–213
  92. Mouraux A, Iannetti GD (2009) Nociceptive laser-evoked brain potentials do not reflect nociceptive-specific neural activity. J Neurophysiol 101:3258–3269
  93. Mouraux A, Plaghki L (2007) Cortical interactions and integration of nociceptive and non-nociceptive somatosensory inputs in humans. Neuroscience 150:72–81
  94. Mouraux A, Guerit JM, Plaghki L (2003) Non-phase locked electroencephalogram (EEG) responses to CO2 laser skin stimulations may reflect central interactions between Aδ- and C-fibre afferent volleys. Clin Neurophysiol 114:710–722
  95. Mouraux A, Guerit JM, Plaghki L (2004) Refractoriness cannot explain why C-fiber laser-evoked brain potentials are recorded only if concomitant Adelta-fiber activation is avoided. Pain 112:16–26
  96. Naatanen R, Picton T (1987) The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 24:375–425
  97. Naatanen R, Paavilainen P, Rinne T, Alho K (2007) The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol 118:2544–2590
  98. Nahra H, Plaghki L (2003) Modulation of perception and neurophysiological correlates of brief CO2 laser stimuli in humans using concurrent large fiber stimulation. Somatosens Mot Res 20:139–147
  99. Ohara S, Crone NE, Weiss N, Treede RD, Lenz FA (2004) Amplitudes of laser evoked potential recorded from primary somatosensory, parasylvian and medial frontal cortex are graded with stimulus intensity. Pain 110:318–328
  100. Ostrowsky K, Magnin M, Ryvlin P, Isnard J, Guenot M, Mauguiere F (2002) Representation of pain and somatic sensation in the human insula: a study of responses to direct electrical cortical stimulation. Cereb Cortex 12:376–385
  101. Plaghki L, Delisle D, Godfraind JM (1994) Heterotopic nociceptive conditioning stimuli and mental task modulate differently the perception and physiological correlates of short CO2 laser stimuli. Pain 57:181–192
  102. Ploghaus A, Tracey I, Gati JS, Clare S, Menon RS, Matthews PM, Rawlins JN (1999) Dissociating pain from its anticipation in the human brain. Science 284:1979–1981
  103. Ploner M, Gross J, Timmermann L, Schnitzler A (2002) Cortical representation of first and second pain sensation in humans. Proc Natl Acad Sci USA 99:12444–12448
  104. Porro CA (2003) Functional imaging and pain: behavior, perception, and modulation. Neuroscientist 9:354–369
  105. Porro CA, Cettolo V, Francescato MP, Baraldi P (1998) Temporal and intensity coding of pain in human cortex. J Neurophysiol 80:3312–3320
  106. Raij TT, Vartiainen NV, Jousmaki V, Hari R (2003) Effects of interstimulus interval on cortical responses to painful laser stimulation. J Clin Neurophysiol 20:73–79
  107. Rainville P (2002) Brain mechanisms of pain affect and pain modulation. Curr Opin Neurobiol 12:195–204
  108. Rainville P, Duncan GH, Price DD, Carrier B, Bushnell MC (1997) Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277:968–971
  109. Robinson CJ, Burton H (1980) Somatotopographic organization in the second somatosensory area of M. fascicularis. J Comp Neurol 192:43–67
  110. Schnitzler A, Ploner M (2000) Neurophysiology and functional neuroanatomy of pain perception. J Clin Neurophysiol 17:592–603
  111. Schweinhardt P, Bountra C, Tracey I (2006) Pharmacological FMRI in the development of new analgesic compounds. NMR Biomed 19:702–711
  112. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27:2349–2356
  113. Sikes RW, Vogt BA (1992) Nociceptive neurons in area 24 of rabbit cingulate cortex. J Neurophysiol 68:1720–1732
  114. Singer T, Seymour B, O’Doherty J, Kaube H, Dolan RJ, Frith CD (2004) Empathy for pain involves the affective but not sensory components of pain. Science 303:1157–1162
  115. Sokolov EN (1975) The neuronal mechanisms of the orienting reflex. In: Sokolov EN, Vinogradova OS (eds) The neuronal mechanisms of the orienting reflex. Lawrence Erlbaum Associates, Hillsdale, pp 217–235
  116. Speckmann E, Elger C (1999) Introduction to the neurophysiological basis of the EEG and DC potentials. In: Niedermeyer E, Lopes Da Silva F (eds) Electroencephalography. Basic principles, clinical applications, and related fields. Lippincott Williams and Wilkins, Baltimore, pp 15–27
  117. Starr CJ, Sawaki L, Wittenberg GF, Burdette JH, Oshiro Y, Quevedo AS, Coghill RC (2009) Roles of the insular cortex in the modulation of pain: insights from brain lesions. J Neurosci 29:2684–2694
  118. Stern J, Jeanmonod D, Sarnthein J (2006) Persistent EEG overactivation in the cortical pain matrix of neurogenic pain patients. Neuroimage 31:721–731
  119. Stowell H (1984) Event related brain potentials and human pain: a first objective overview. Int J Psychophysiol 1:137–151
  120. Talbot JD, Marrett S, Evans AC, Meyer E, Bushnell MC, Duncan GH (1991) Multiple representations of pain in human cerebral cortex. Science 251:1355–1358
  121. Timmermann L, Ploner M, Haucke K, Schmitz F, Baltissen R, Schnitzler A (2001) Differential coding of pain intensity in the human primary and secondary somatosensory cortex. J Neurophysiol 86:1499–1503
  122. Tolle TR, Kaufmann T, Siessmeier T, Lautenbacher S, Berthele A, Munz F, Zieglgansberger W, Willoch F, Schwaiger M, Conrad B, Bartenstein P (1999) Region-specific encoding of sensory and affective components of pain in the human brain: a positron emission tomography correlation analysis. Ann Neurol 45:40–47
  123. Tracey I (2005) Nociceptive processing in the human brain. Curr Opin Neurobiol 15:478–487
  124. Tracey I, Mantyh PW (2007) The cerebral signature for pain perception and its modulation. Neuron 55:377–391
  125. Treede RD (2006) Chapter 1 pain and hyperalgesia: definitions and theories. Handb Clin Neurol 81:3–10
  126. Treede RD, Kenshalo DR, Gracely RH, Jones AK (1999) The cortical representation of pain. Pain 79:105–111
  127. Truini A, Rossi P, Galeotti F, Romaniello A, Virtuoso M, De Lena C, Leandri M, Cruccu G (2004) Excitability of the Adelta nociceptive pathways as assessed by the recovery cycle of laser evoked potentials in humans. Exp Brain Res 155:120–123
  128. Truini A, Galeotti F, Cruccu G, Garcia-Larrea L (2007) Inhibition of cortical responses to Adelta inputs by a preceding C-related response: testing the “first come, first served” hypothesis of cortical laser evoked potentials. Pain 131:341–347
  129. Valeriani M, Betti V, Le Pera D, De Armas L, Miliucci R, Restuccia D, Avenanti A, Aglioti SM (2008) Seeing the pain of others while being in pain: a laser-evoked potentials study. Neuroimage 40:1419–1428
  130. Van Damme S, Legrain V, Vogt J, Crombez G (2010) Keeping pain in mind: a motivational account of attention to pain. Neurosci Biobehav Rev 34:204–213
  131. Wall PD (1995) Independent mechanisms converge on pain. Nat Med 1:740–741
  132. Wang AL, Mouraux A, Liang M, Iannetti GD (2008) The enhancement of the N1 wave elicited by sensory stimuli presented at very short inter-stimulus intervals is a general feature across sensory systems. PLoS ONE 3:e3929
  133. Whitsel BL, Petrucelli LM, Werner G (1969) Symmetry and connectivity in the map of the body surface in somatosensory area II of primates. J Neurophysiol 32:170–183
  134. Whitsel BL, Favorov OV, Li Y, Quibrera M, Tommerdahl M (2009) Area 3a neuron response to skin nociceptor afferent drive. Cereb Cortex 19:349–366
  135. Whyte J (2008) Clinical implications of the integrity of the pain matrix. Lancet Neurol 7:979–980
  136. Wang AL, Mouraux A, Meng L, Iannetti GD (in press) Stimulus novelty and not neural refractoriness explains the repetition suppression of laser-evoked potentials (LEPs). J Neurophysiol
  137. Yamamura H., Iwata K., Tsuboi Y., Toda K., Kitajima K., Shimizu N., Nomura H., Hibiya J., Fujita S., Sumino R., Morphological and electrophysiological properties of ACCx nociceptive neurons in rats, 10.1016/0006-8993(96)00561-6
  138. Yantis S (2008) The neural basis of selective attention: cortical sources and targets of attentional modulation. Curr Dir Psychol Sci 17:86–90
  139. Young GB, Blume WT (1983) Painful epileptic seizures. Brain 106(Pt 3):537–554
  140. Craig AD, Chen K, Bandy D, Reiman EM (2000) Thermosensory activation of insular cortex. Nat Neurosci 3:184–190
  141. Iannetti GD, Lee MC, Mouraux A (2010) A multisensory investigation of the functional significance of the “pain matrix”. 13th World Congress on Pain, Montreal, Canada