User menu

Three-dimensional appearance of the lips muscles with three-dimensional isotropic MRI: in vivo study.

Bibliographic reference Olszewski, Raphaël ; Liu, Yang ; Duprez, Thierry ; Xu, T M ; Reychler, Hervé. Three-dimensional appearance of the lips muscles with three-dimensional isotropic MRI: in vivo study.. In: International journal of computer assisted radiology and surgery, Vol. 4, no. 4, p. 349-52 (2009)
Permanent URL http://hdl.handle.net/2078.1/28916
  1. Zhang Y, Prakash EC, Sunq E (2004) A new physical model with multilayer architecture for facial expression animation using dynamic adaptative mesh. IEEE Trans Vis Comput Graph 10: 339–352. doi: 10.1109/TVCG.2004.1272733
  2. De Greef Sven, Claes Peter, Mollemans Wouter, Loubele Miet, Vandermeulen Dirk, Suetens Paul, Willems Guy, Semi-automated Ultrasound Facial Soft Tissue Depth Registration: Method and Validation, 10.1520/jfs2004547
  3. King SA, Parent RE (2005) Creating speech-synchronized animation. IEEE Trans Vis Comput Graph 11: 341–352. doi: 10.1109/TVCG.2005.43
  4. Chabanas M, Luboz V, Payan Y (2003) Patient specific finite element model of the face soft tissues for computer-assisted maxillofacial surgery. Med Image Anal 7: 131–151. doi: 10.1016/S1361-8415(02)00108-1
  5. Mollemans W, Schutyser F, Nadjmi N et al (2007) Predicting soft tissue deformations for a maxillofacial surgery planning system: from computational strategies to a complete clinical validation. Med Image Anal 11: 282–301
  6. Xia J, Samman N, Yeung RW et al (2000) Computer-assisted three-dimensional surgical planning and simulation. 3D soft tissue planning and prediction. Int J Oral Maxillofac Surg 29: 250–254. doi: 10.1016/S0901-5027(00)80023-5
  7. Troulis Mj, Everett P, Seldin EB et al (2002) Development of a three-dimensional treatment planning system based on computed tomographic data. Int J Oral Maxillofac Surg 31: 349–357. doi: 10.1054/ijom.2002.0278
  8. Gering D, Nabavi A, Kikinis R et al (1999) An integrated visualization system for surgical planning and guidance using image fusion and interventional imaging. Int Conf Med Image Comput Comput Assist Interv 2: 809–819. doi: 10.1007/10704282_88
  9. Gering D (1999) A system for surgical planning and guidance using image fusion and interventional MR. MIT Master’s thesis
  10. Nabavi A, Hata N, Gering D et al (1999) Image guided neurosurgery visualization of brain shift. In: Navigated Brain Surgery, pp 17–26
  11. Pessa JE, Zadoo VP, Garza PA et al (1998) Double or bifid zygomaticus major muscle: anatomy, incidence, and clinical correlation. Clin Anat 11: 310–313. doi: 10.1002/(SICI)1098-2353(1998)11:5<310::AID-CA3>3.0.CO;2-T
  12. Teran J, Sifakis E, Blemker SS et al (2005) Creating and simulating skeletal muscle from the visible human data set. IEEE Trans Vis Comput Graph 11: 317–328. doi: 10.1109/TVCG.2005.42
  13. Pessa JE, Zadoo VP, Adrian EK Jr et al (1998) Variability of the midfacial muscles: analysis of 50 hemifacial cadaver dissections. Plast Reconstr Surg 102: 1888–1893. doi: 10.1097/00006534-199811000-00013
  14. Chuang DC, Wei FC, Noordhoff MS (1989) “Smile” reconstruction in facial paralysis. Ann Plast Surg 23: 56–65. doi: 10.1097/00000637-198907000-00010
  15. Waller BM, Cray JJ, Burrows AM (2008) Selection for universal facial emotion. Emotion 8: 435–439. doi: 10.1037/1528-3542.8.3.435