Accès à distance ? S'identifier sur le proxy UCLouvain
Development of Machine learning algorithms to identify the Cobb angle in adolescents with idiopathic scoliosis based on lumbosacral joint efforts during gait (Case study)
Primary tabs
- Open access
- 630.35 K
Document type | Article de périodique (Journal article) – Article de recherche |
---|---|
Access type | Accès libre |
Publication date | 2023 |
Language | Anglais |
Journal information | "Electronic & Electrical Engineering Research Studies. Pattern Recognition and Image Processing Series" - Vol. 1, no.1, p. 30 (2023) |
Peer reviewed | yes |
Publisher | Research Studies Press Ltd. (Baldock) |
issn | 0278-825X |
e-issn | 0278-825X |
Publication status | Publié |
Affiliations |
UCL
- SSS/IREC/NMSK - Neuro-musculo-skeletal Lab UCL - (SLuc) Service d'orthopédie et de traumatologie de l'appareil locomoteur |
Keywords | Radiation-free ; Cobb angle ; Machine learning regression models ; Adolescent idiopathic scoliosis ; Intervertebral efforts |
Links |
Bibliographic reference | Samadi, Bahare ; Raison, Maxime ; Mahaudens, Philippe ; Detrembleur, Christine ; Achiche, Sofiane. Development of Machine learning algorithms to identify the Cobb angle in adolescents with idiopathic scoliosis based on lumbosacral joint efforts during gait (Case study). In: Electronic & Electrical Engineering Research Studies. Pattern Recognition and Image Processing Series, Vol. 1, no.1, p. 30 (2023) |
---|---|
Permanent URL | http://hdl.handle.net/2078.1/288612 |