Guerra, Daniel G
[UCL]
Vertommen, Didier
[UCL]
Fothergill-Gilmore, Linda A.
Opperdoes, Frederik
[UCL]
Michels, Paulus
[UCL]
Phosphoglycerate mutase (PGAM) activity in promastigotes of the protozoan parasite Leishmania mexicana is found only in the cytosol. It corresponds to a cofactor-independent PGAM as it is not stimulated by 2,3-bisphosphoglycerate and is susceptible to EDTA and resistant to vanadate. We have cloned and sequenced the gene and developed a convenient bacterial expression system and a high-yield purification protocol. Kinetic properties of the bacterially produced protein have been determined (3-phosphoglycerate: K(m) = 0.27 +/- 0.02 mm, k(cat) = 434 +/- 54 s(-1); 2-phosphoglycerate: K(m) = 0.11 +/- 0.03 mm, k(cat) = 199 +/- 24 s(-1)). The activity is inhibited by phosphate but is resistant to Cl(-) and SO(4) (2-). Inactivation by EDTA is almost fully reversed by incubation with CoCl(2) but not with MnCl(2), FeSO(4), CuSO(4), NiCl(2) or ZnCl(2). Alkylation by diethyl pyrocarbonate resulted in irreversible inhibition, but saturating concentrations of substrate provided full protection. Kinetics of the inhibitory reaction showed the modification of a new group of essential residues only after removal of metal ions by EDTA. The modified residues were identified by MS analysis of peptides generated by trypsin digestion. Two substrate-protected histidines in the proximity of the active site were identified (His136, His467) and, unexpectedly, also a distant one (His160), suggesting a conformational change in its environment. Partial protection of His467 was observed by the addition of 25 micro m CoCl(2) to the EDTA treated enzyme but not of 125 micro m MnCl(2), suggesting that the latter metal ion cannot be accommodated in the active site of Leishmania PGAM.
- Fothergill-Gilmore L.A., Adv. Enzymol. Relat. Areas Mol. Biol., 62, 227 (1989)
- Hasemann C.A., Structure, 4, 1017 (1996)
- Galperin M.Y., Protein Sci., 7, 1829 (1998)
- Galperin Michael Y., Jedrzejas Mark J., Conserved core structure and active site residues in alkaline phosphatase superfamily enzymes, 10.1002/prot.1152
- van der Oost J, Molecular characterization of phosphoglycerate mutase in archaea, 10.1016/s0378-1097(02)00720-6
- Fraser Heather I, Kvaratskhelia Mamuka, White Malcolm F, The two analogous phosphoglycerate mutases ofEscherichia coli, 10.1016/s0014-5793(99)00910-2
- Chevalier Nathalie, Rigden Daniel J., Van Roy Joris, Opperdoes Fred R., Michels Paul A. M., Trypanosoma brucei contains a 2,3-bisphosphoglycerate independent phosphoglycerate mutase : Trypanosoma brucei phosphoglycerate mutase, 10.1046/j.1432-1327.2000.01145.x
- 8. UNDP/World Bank/ WHO (2001 ) Fifteenth Programme Report of the UNDP/World Bank/ WHOSpecial Programme for Research and Training in Tropical Diseases. WHO, Geneva.
- Croft S.L., Curr. Pharm. Des., 8, 319 (2002)
- Barrett Michael P., Coombs Graham H., Mottram Jeremy C., Recent advances in identifying and validating drug targets in trypanosomes and leishmanias, 10.1016/s0966-842x(98)01433-4
- Verlinde Christophe L.M.J., Hannaert Véronique, Blonski Casimir, Willson Michèle, Périé Jacques J., Fothergill-Gilmore Linda A., Opperdoes Fred R., Gelb Michael H., Hol Wim G.J., Michels Paul A.M., Glycolysis as a target for the design of new anti-trypanosome drugs, 10.1054/drup.2000.0177
- Poonperm B., Acta Crystallogr., 59, 1313 (2003)
- Brun R., Acta Trop., 36, 289 (1979)
- Steiger R.F., Eur. J. Biochem., 105, 163 (1980)
- Hannaert Véronique, Blaauw Mieke, Kohl Linda, Allert Sylvie, Opperdoes Fred R., Michels Paul A.M., Molecular analysis of the cytosolic and glycosomal glyceraldehyde-3-phosphate dehydrogenase in Leishmania mexicana, 10.1016/0166-6851(92)90132-4
- Graham David E., Xu Huimin, White Robert H., A divergent archaeal member of the alkaline phosphatase binuclear metalloenzyme superfamily has phosphoglycerate mutase activity, 10.1016/s0014-5793(02)02619-4
- Bradford M, A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding, 10.1006/abio.1976.9999
- Consler T.G., Biochemistry, 31, 7870 (1992)
- Penefsky H.S., J. Biol. Chem., 25, 2891 (1977)
- da Silva Giotto Maria Teresa, Hannaert Véronique, Vertommen Didier, Navarro Marcos V.de A.S., Rider Mark H., Michels Paul A.M., Garratt Richard C., Rigden Daniel J., The Crystal Structure of Trypanosoma brucei Enolase: Visualisation of the Inhibitory Metal Binding Site III and Potential as Target for Selective, Irreversible Inhibition, 10.1016/s0022-2836(03)00752-6
- Oduro K.K., Exp. Parasitol., 50, 123 (1980)
- Carreras J., Biochem. Biophys. Res. Commun., 96, 1267 (1980)
- Bond Charles S., White Malcolm F., Hunter William N., Mechanistic implications for Escherichia coli cofactor-dependent phosphoglycerate mutase based on the high-resolution crystal structure of a vanadate complex, 10.1006/jmbi.2002.5418
- Hannaert V., Saavedra E., Duffieux F., Szikora J.-P., Rigden D. J., Michels P. A. M., Opperdoes F. R., Plant-like traits associated with metabolism of Trypanosoma parasites, 10.1073/pnas.0335769100
- Kuhn N.J., Setlow B., Setlow P., Cammack R., Williams R., Cooperative Manganese(II) Activation of 3-Phosphoglycerate Mutase of Bacillus megaterium: A Biological pH-Sensing Mechanism in Bacterial Spore Formation and Germination, 10.1006/abbi.1995.1339
- Magill N.G., J. Bacteriol., 178, 2204 (1996)
- Rose Z.B., J. Biol. Chem., 253, 8583 (1978)
- Rose Z.B., Biochem. Biophys. Res. Commun., 121, 834 (1984)
- Grisolia S., Biochemistry, 7, 1115 (1968)
- 30. R.L. Lundblad, and C.M. Noyes (1985 ) Chemical Reagents for Protein Modification , Vol. I , pp. 105 111 . CRC Press Inc, Boca Raton.
- Miles Edith Wilson, [41] Modification of histidyl residues in proteins by diethylpyrocarbonate, Methods in Enzymology (1977) ISBN:9780121819477 p.431-442, 10.1016/0076-6879(77)47043-5
- Beebe Jane A., Frey Perry A., Galactose Mutarotase: Purification, Characterization, and Investigations of Two Important Histidine Residues†, 10.1021/bi9816047
- Huang Y., Eur. J. Biochem., 229, 395 (1995)
- Qin Kefeng, Yang Ying, Mastrangelo Peter, Westaway David, Mapping Cu(II) Binding Sites in Prion Proteins by Diethyl Pyrocarbonate Modification and Matrix-assisted Laser Desorption Ionization-Time of Flight (MALDI-TOF) Mass Spectrometric Footprinting, 10.1074/jbc.m108744200
- Jedrzejas M. J., Structure and mechanism of action of a novel phosphoglycerate mutase from Bacillus stearothermophilus, 10.1093/emboj/19.7.1419
- Jedrzejas Mark J., Chander Monica, Setlow Peter, Krishnasamy Gunasekaran, Mechanism of Catalysis of the Cofactor-independent Phosphoglycerate Mutase fromBacillus stearothermophilus : CRYSTAL STRUCTURE OF THE COMPLEX WITH 2-PHOSPHOGLYCERATE, 10.1074/jbc.m002544200
- Collet J, The 2,3-bisphosphoglycerate-independent phosphoglycerate mutase from Trypanosoma brucei: metal-ion dependency and phosphoenzyme formation, 10.1016/s0378-1097(01)00372-x
- Smith G.C., Biochem. Biophys. Res. Commun., 136, 336 (1986)
- Singh R.P., J. Bacteriol., 137, 1024 (1979)
- Singh R.P., J. Bacteriol., 139, 889 (1979)
- Chander Monica, Setlow Barbara, Setlow Peter, The enzymatic activity of phosphoglycerate mutase from gram-positive endospore-forming bacteria requires Mn2+ and is pH sensitive, 10.1139/cjm-44-8-759
- Rigden Daniel J., Lamani Ejvis, Mello Luciane V., Littlejohn James E., Jedrzejas Mark J., Insights into the Catalytic Mechanism of Cofactor-independent Phosphoglycerate Mutase from X-ray Crystallography, Simulated Dynamics and Molecular Modeling, 10.1016/s0022-2836(03)00350-4
- Chen Gong, Heim Alexander, Riether Doris, Yee Dominic, Milgrom Yelena, Gawinowicz Mary Ann, Sames Dalibor, Reactivity of Functional Groups on the Protein Surface: Development of Epoxide Probes for Protein Labeling, 10.1021/ja034287m
Bibliographic reference |
Guerra, Daniel G ; Vertommen, Didier ; Fothergill-Gilmore, Linda A. ; Opperdoes, Frederik ; Michels, Paulus. Characterization of the cofactor-independent phosphoglycerate mutase from Leishmania mexicana mexicana. Histidines that coordinate the two metal ions in the active site show different susceptibilities to irreversible chemical modification.. In: European journal of biochemistry / FEBS, Vol. 271, no. 9, p. 1798-810 (2004) |
Permanent URL |
http://hdl.handle.net/2078.1/22001 |