De Backer, Mickaël
[UCL]
El Ghouch, Anouar
[UCL]
Van Keilegom, Ingrid
[UCL]
In this article, we study a novel approach for the estimation of quantiles when facing potential right censoring of the responses. Contrary to the existing literature on the subject, the adopted strategy of this article is to tackle censoring at the very level of the loss function usually employed for the computation of quantiles, the so-called “check” function. For interpretation purposes, a simple comparison with the latter reveals how censoring is accounted for in the newly proposed loss function. Subsequently, when considering the inclusion of covariates for conditional quantile estimation, by defining a new general loss function the proposed methodology opens the gate to numerous parametric, semiparametric, and nonparametric modeling techniques. To illustrate this statement, we consider the well-studied linear regression under the usual assumption of conditional independence between the true response and the censoring variable. For practical minimization of the studied loss function, we also provide a simple algorithmic procedure shown to yield satisfactory results for the proposed estimator with respect to the existing literature in an extensive simulation study. From a more theoretical prospect, consistency and asymptotic normality of the estimator for linear regression are obtained using several recent results on nonsmooth semiparametric estimation equations with an infinite-dimensional nuisance parameter, while numerical examples illustrate the adequateness of a simple bootstrap procedure for inferential purposes. Lastly, an application to a real dataset is used to further illustrate the validity and finite sample performance of the proposed estimator. Supplementary materials for this article are available online.
- Bang Heejung, Tsiatis Anastasios A., Median Regression with Censored Cost Data, 10.1111/j.0006-341x.2002.00643.x
- Birke Melanie, Van Bellegem Sebastien, Van Keilegom Ingrid, Semi-parametric Estimation in a Single-index Model with Endogenous Variables : Single-index models under endogeneity, 10.1111/sjos.12247
- Chen Xiaohong, Linton Oliver, Van Keilegom Ingrid, Estimation of Semiparametric Models when the Criterion Function Is Not Smooth, 10.1111/1468-0262.00461
- De Backer Mickaël, El Ghouch Anouar, Van Keilegom Ingrid, Semiparametric copula quantile regression for complete or censored data, 10.1214/17-ejs1273
- Efron B., Proceedings of the Fifth Berkeley Symposium in Mathematical Statistics, 831 (1967)
- El Ghouch A., Statistica Sinica, 19, 1621 (2009)
- Elsner James B., Kossin James P., Jagger Thomas H., The increasing intensity of the strongest tropical cyclones, 10.1038/nature07234
- Gill Richard, Large Sample Behaviour of the Product-Limit Estimator on the Whole Line, 10.1214/aos/1176346055
- Hunter David R., Lange Kenneth, Quantile Regression via an MM Algorithm, 10.1080/10618600.2000.10474866
- Hyde J., Biostatistics Casebook, 31 (1980)
- Koenker Roger, Quantile Regression, ISBN:9780511754098, 10.1017/cbo9780511754098
- Koenker Roger, Bassett Gilbert, Regression Quantiles, 10.2307/1913643
- Koenker Roger, Bilias Yannis, Quantile regression for duration data: A reappraisal of the Pennsylvania Reemployment Bonus Experiments, 10.1007/s001810000057
- Koenker Roger, Geling Olga, Reappraising Medfly Longevity : A Quantile Regression Survival Analysis, 10.1198/016214501753168172
- Koul H., Susarla V., Ryzin J. Van, Regression Analysis with Randomly Right-Censored Data, 10.1214/aos/1176345644
- Leng Chenlei, Tong Xingwei, A quantile regression estimator for censored data, 10.3150/11-bej388
- Lindgren Anna, Quantile regression with censored data using generalized L1 minimization, 10.1016/s0167-9473(96)00048-5
- Lo Shaw-Hwa, Singh Kesar, The product-limit estimator and the bootstrap: Some asymptotic representations, 10.1007/bf01000216
- Lopez Olivier, Nonparametric Estimation of the Multivariate Distribution Function in a Censored Regression Model with Applications, 10.1080/03610926.2010.489175
- Peng Limin, Huang Yijian, Survival Analysis With Quantile Regression Models, 10.1198/016214508000000355
- Portnoy Stephen, Censored Regression Quantiles, 10.1198/016214503000000954
- Powell James L, Least absolute deviations estimation for the censored regression model, 10.1016/0304-4076(84)90004-6
- Powell James L., Censored regression quantiles, 10.1016/0304-4076(86)90016-3
- Shows Justin Hall, Lu Wenbin, Zhang Hao Helen, Sparse estimation and inference for censored median regression, 10.1016/j.jspi.2010.01.043
- Tang Yanlin, Wang Huixia Judy, Penalized regression across multiple quantiles under random censoring, 10.1016/j.jmva.2015.07.006
- van der Vaart Aad W., Wellner Jon A., Weak Convergence and Empirical Processes, ISBN:9781475725476, 10.1007/978-1-4757-2545-2
- Akritas Michael G., Van Keilegom Ingrid, models, 10.1214/aos/1017939150
- Wang Huixia Judy, Wang Lan, Locally Weighted Censored Quantile Regression, 10.1198/jasa.2009.tm08230
- Wang H. J., Statistica Sinica, 23, 145 (2013)
- Wey A., Wang L., Rudser K., Censored quantile regression with recursive partitioning-based weights, 10.1093/biostatistics/kxt027
- Wu Yuanshan, Yin Guosheng, Multiple imputation for cure rate quantile regression with censored data : Multiple Imputation for Cure Rate Quantile Regression, 10.1111/biom.12574
- Ying Z., Jung S. H., Wei L. J., Survival Analysis with Median Regression Models, 10.1080/01621459.1995.10476500
- Zhou L., Statistica Sinica, 16, 1043 (2006)
Bibliographic reference |
De Backer, Mickaël ; El Ghouch, Anouar ; Van Keilegom, Ingrid. An Adapted Loss Function for Censored Quantile Regression. In: Journal of the American Statistical Association, Vol. 114, no. 527, p. 1126-1137 (2019) |
Permanent URL |
http://hdl.handle.net/2078.1/219403 |