Maury, Eléonore
[UCL]
Ramsey, Kathryn Moynihan
Bass, Joseph
The incidence of the metabolic syndrome represents a spectrum of disorders that continue to increase across the industrialized world. Both genetic and environmental factors contribute to metabolic syndrome and recent evidence has emerged to suggest that alterations in circadian systems and sleep participate in the pathogenesis of the disease. In this review, we highlight studies at the intersection of clinical medicine and experimental genetics that pinpoint how perturbations of the internal clock system, and sleep, constitute risk factors for disorders including obesity, diabetes mellitus, cardiovascular disease, thrombosis and even inflammation. An exciting aspect of the field has been the integration of behavioral and physiological approaches, and the emerging insight into both neural and peripheral tissues in disease pathogenesis. Consideration of the cell and molecular links between disorders of circadian rhythms and sleep with metabolic syndrome has begun to open new opportunities for mechanism-based therapeutics.
- Lorenzo C., Williams K., Hunt K. J., Haffner S. M., The National Cholesterol Education Program-Adult Treatment Panel III, International Diabetes Federation, and World Health Organization Definitions of the Metabolic Syndrome as Predictors of Incident Cardiovascular Disease and Diabetes, 10.2337/dc06-1414
- Alberti K George MM, Zimmet Paul, Shaw Jonathan, The metabolic syndrome—a new worldwide definition, 10.1016/s0140-6736(05)67402-8
- Klein S., Allison D. B., Heymsfield S. B., Kelley D. E., Leibel R. L., Nonas C., Kahn R., Waist Circumference and Cardiometabolic Risk: A Consensus Statement from Shaping America's Health: Association for Weight Management and Obesity Prevention; NAASO, The Obesity Society; the American Society for Nutrition; and the American Diabetes Association, 10.2337/dc07-9921
- Zimmet Paul, Magliano Dianna, Matsuzawa Yuji, Alberti George, Shaw Jonathan, The Metabolic Syndrome: A Global Public Health Problem and A New Definition, 10.5551/jat.12.295
- Knutson Kristen L., Spiegel Karine, Penev Plamen, Van Cauter Eve, The metabolic consequences of sleep deprivation, 10.1016/j.smrv.2007.01.002
- Knutson Kristen L., Van Cauter Eve, Associations between Sleep Loss and Increased Risk of Obesity and Diabetes, 10.1196/annals.1417.033
- Scheer F. A. J. L., Hilton M. F., Mantzoros C. S., Shea S. A., Adverse metabolic and cardiovascular consequences of circadian misalignment, 10.1073/pnas.0808180106
- Green Carla B., Takahashi Joseph S., Bass Joseph, The Meter of Metabolism, 10.1016/j.cell.2008.08.022
- Kohsaka Akira, Laposky Aaron D., Ramsey Kathryn Moynihan, Estrada Carmela, Joshu Corinne, Kobayashi Yumiko, Turek Fred W., Bass Joseph, High-Fat Diet Disrupts Behavioral and Molecular Circadian Rhythms in Mice, 10.1016/j.cmet.2007.09.006
- Kawakami N., Takatsuka N., Shimizu H., Sleep Disturbance and Onset of Type 2 Diabetes, 10.2337/diacare.27.1.282
- Spiegel Karine, Tasali Esra, Leproult Rachel, Van Cauter Eve, Effects of poor and short sleep on glucose metabolism and obesity risk, 10.1038/nrendo.2009.23
- Suwazono Yasushi, Dochi Mirei, Sakata Kouichi, Okubo Yasushi, Oishi Mitsuhiro, Tanaka Kumihiko, Kobayashi Etsuko, Kido Teruhiko, Nogawa Koji, A Longitudinal Study on the Effect of Shift Work on Weight Gain in Male Japanese Workers, 10.1038/oby.2008.298
- Yaggi H. K., Araujo A. B., McKinlay J. B., Sleep Duration as a Risk Factor for the Development of Type 2 Diabetes, 10.2337/diacare.29.03.06.dc05-0879
- Lumeng J. C., Somashekar D., Appugliese D., Kaciroti N., Corwyn R. F., Bradley R. H., Shorter Sleep Duration Is Associated With Increased Risk for Being Overweight at Ages 9 to 12 Years, 10.1542/peds.2006-3295
- Spiegel Karine, Knutson Kristen, Leproult Rachel, Tasali Esra, Cauter Eve Van, Sleep loss: a novel risk factor for insulin resistance and Type 2 diabetes, 10.1152/japplphysiol.00660.2005
- Spiegel Karine, Leproult Rachel, Van Cauter Eve, Impact of sleep debt on metabolic and endocrine function, 10.1016/s0140-6736(99)01376-8
- Taheri Shahrad, Lin Ling, Austin Diane, Young Terry, Mignot Emmanuel, Short Sleep Duration Is Associated with Reduced Leptin, Elevated Ghrelin, and Increased Body Mass Index, 10.1371/journal.pmed.0010062
- Ramsey K. M., Bass J., Lean gene and the clock machine, 10.1073/pnas.0703516104
- Stunkard Albert J., Allison Kelly C., Geliebter Allan, Lundgren Jennifer D., Gluck Marci E., O'Reardon John P., Development of criteria for a diagnosis: lessons from the night eating syndrome, 10.1016/j.comppsych.2008.09.013
- de Sousa A. G. P., Cercato C., Mancini M. C., Halpern A., Obesity and obstructive sleep apnea-hypopnea syndrome, 10.1111/j.1467-789x.2008.00478.x
- Burioka N., Koyanagi S., Endo M., Takata M., Fukuoka Y., Miyata M., Takeda K., Chikumi H., Ohdo S., Shimizu E., Clock gene dysfunction in patients with obstructive sleep apnoea syndrome, 10.1183/09031936.00138207
- Kok S. W., Meinders A. E., Overeem S., Lammers G. J., Roelfsema F., Frölich M., Pijl H., Reduction of Plasma Leptin Levels and Loss of Its Circadian Rhythmicity in Hypocretin (Orexin)-Deficient Narcoleptic Humans, 10.1210/jcem.87.2.8246
- Oishi Katsutaka, Plasminogen Activator Inhibitor-1 and the Circadian Clock in Metabolic Disorders, 10.1080/10641960902822468
- Knutsson A., Health disorders of shift workers, 10.1093/occmed/kqg048
- Ayas Najib T., White David P., Manson JoAnn E., Stampfer Meir J., Speizer Frank E., Malhotra Atul, Hu Frank B., A Prospective Study of Sleep Duration and Coronary Heart Disease in Women, 10.1001/archinte.163.2.205
- Janszky Imre, Ljung Rickard, Shifts to and from Daylight Saving Time and Incidence of Myocardial Infarction, 10.1056/nejmc0807104
- Imeri Luca, Opp Mark R., How (and why) the immune system makes us sleep, 10.1038/nrn2576
- Vgontzas Alexandros N., Papanicolaou Dimitris A., Bixler Edward O., Lotsikas Angela, Zachman Keith, Kales Anthony, Prolo Paolo, Wong Ma-Li, Licinio Julio, Gold Philip W., Hermida Ramon C., Mastorakos George, Chrousos George P., Circadian Interleukin-6 Secretion and Quantity and Depth of Sleep, 10.1210/jcem.84.8.5894
- Vgontzas A.N., Zoumakis M., Papanicolaou D.A., Bixler E.O., Prolo P., Lin H.-M., Vela-Bueno A., Kales A., Chrousos G.P., Chronic insomnia is associated with a shift of interleukin-6 and tumor necrosis factor secretion from nighttime to daytime, 10.1053/meta.2002.33357
- Krueger James, The Role of Cytokines in Sleep Regulation, 10.2174/138161208786549281
- Thorax, 64, 631 (2009)
- Hotamisligil Gökhan S., Erbay Ebru, Nutrient sensing and inflammation in metabolic diseases, 10.1038/nri2449
- Ribeiro DC, Hampton SM, Morgan L, Deacon S, Arendt J, Altered postprandial hormone and metabolic responses in a simulated shift work environment, 10.1677/joe.0.1580305
- Ramsey K. M., Bass J., Obeying the clock yields benefits for metabolism, 10.1073/pnas.0901304106
- Cuninkova Ludmila, Brown Steven A., Peripheral Circadian Oscillators, 10.1196/annals.1417.005
- He Y., Jones C. R., Fujiki N., Xu Y., Guo B., Holder J. L., Rossner M. J., Nishino S., Fu Y.-H., The Transcriptional Repressor DEC2 Regulates Sleep Length in Mammals, 10.1126/science.1174443
- Ptáček L. J., Jones C. R., Fu Y.-H., Novel Insights from Genetic and Molecular Characterization of the Human Clock, 10.1101/sqb.2007.72.017
- Dialogues Clin Neurosci, 10, 337 (2008)
- Pulkki-Råback Laura, Elovainio Marko, Kivimäki Mika, Mattsson Noora, Raitakari Olli T., Puttonen Sampsa, Marniemi Jukka, Viikari Jorma S. A., Keltikangas-Järvinen Liisa, Depressive symptoms and the metabolic syndrome in childhood and adulthood: A prospective cohort study., 10.1037/a0012646
- Scott E M, Carter A M, Grant P J, Association between polymorphisms in the Clock gene, obesity and the metabolic syndrome in man, 10.1038/sj.ijo.0803778
- Sookoian Silvia, Gemma Carolina, Gianotti Tomas Fernández, Burgueño Adriana, Castaño Gustavo, Pirola Carlos Jose, Genetic variants of Clock transcription factor are associated with individual susceptibility to obesity, 10.1093/ajcn/87.6.1606
- Woon P. Y., Kaisaki P. J., Braganca J., Bihoreau M.-T., Levy J. C., Farrall M., Gauguier D., Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertension and type 2 diabetes, 10.1073/pnas.0703247104
- Englund Ani, Kovanen Leena, Saarikoski Sirkku T, Haukka Jari, Reunanen Antti, Aromaa Arpo, Lönnqvist Jouko, Partonen Timo, NPAS2 and PER2 are linked to risk factors of the metabolic syndrome, 10.1186/1740-3391-7-5
- Nakahata Y., Sahar S., Astarita G., Kaluzova M., Sassone-Corsi P., Circadian Control of the NAD+ Salvage Pathway by CLOCK-SIRT1, 10.1126/science.1170803
- Ramsey K. M., Yoshino J., Brace C. S., Abrassart D., Kobayashi Y., Marcheva B., Hong H.-K., Chong J. L., Buhr E. D., Lee C., Takahashi J. S., Imai S.-i., Bass J., Circadian Clock Feedback Cycle Through NAMPT-Mediated NAD+ Biosynthesis, 10.1126/science.1171641
- Obesity (Silver Spring), 7, 1549 (2009)
- Bouatia-Naji Nabila, Bonnefond Amélie, Cavalcanti-Proença Christine, Sparsø Thomas, Holmkvist Johan, Marchand Marion, Delplanque Jérôme, Lobbens Stéphane, Rocheleau Ghislain, Durand Emmanuelle, De Graeve Franck, Chèvre Jean-Claude, Borch-Johnsen Knut, Hartikainen Anna-Liisa, Ruokonen Aimo, Tichet Jean, Marre Michel, Weill Jacques, Heude Barbara, Tauber Maithé, Lemaire Katleen, Schuit Frans, Elliott Paul, Jørgensen Torben, Charpentier Guillaume, Hadjadj Samy, Cauchi Stéphane, Vaxillaire Martine, Sladek Robert, Visvikis-Siest Sophie, Balkau Beverley, Lévy-Marchal Claire, Pattou François, Meyre David, Blakemore Alexandra I F, Jarvelin Marjo-Riita, Walley Andrew J, Hansen Torben, Dina Christian, Pedersen Oluf, Froguel Philippe, A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk, 10.1038/ng.277
- Prokopenko Inga, Langenberg Claudia, Florez Jose C, Saxena Richa, Soranzo Nicole, Thorleifsson Gudmar, Loos Ruth J F, Manning Alisa K, Jackson Anne U, Aulchenko Yurii, Potter Simon C, Erdos Michael R, Sanna Serena, Hottenga Jouke-Jan, Wheeler Eleanor, Kaakinen Marika, Lyssenko Valeriya, Chen Wei-Min, Ahmadi Kourosh, Beckmann Jacques S, Bergman Richard N, Bochud Murielle, Bonnycastle Lori L, Buchanan Thomas A, Cao Antonio, Cervino Alessandra, Coin Lachlan, Collins Francis S, Crisponi Laura, de Geus Eco J C, Dehghan Abbas, Deloukas Panos, Doney Alex S F, Elliott Paul, Freimer Nelson, Gateva Vesela, Herder Christian, Hofman Albert, Hughes Thomas E, Hunt Sarah, Illig Thomas, Inouye Michael, Isomaa Bo, Johnson Toby, Kong Augustine, Krestyaninova Maria, Kuusisto Johanna, Laakso Markku, Lim Noha, Lindblad Ulf, Lindgren Cecilia M, McCann Owen T, Mohlke Karen L, Morris Andrew D, Naitza Silvia, Orrù Marco, Palmer Colin N A, Pouta Anneli, Randall Joshua, Rathmann Wolfgang, Saramies Jouko, Scheet Paul, Scott Laura J, Scuteri Angelo, Sharp Stephen, Sijbrands Eric, Smit Jan H, Song Kijoung, Steinthorsdottir Valgerdur, Stringham Heather M, Tuomi Tiinamaija, Tuomilehto Jaakko, Uitterlinden André G, Voight Benjamin F, Waterworth Dawn, Wichmann H-Erich, Willemsen Gonneke, Witteman Jacqueline C M, Yuan Xin, Zhao Jing Hua, Zeggini Eleftheria, Schlessinger David, Sandhu Manjinder, Boomsma Dorret I, Uda Manuela, Spector Tim D, Penninx Brenda WJH, Altshuler David, Vollenweider Peter, Jarvelin Marjo Riitta, Lakatta Edward, Waeber Gerard, Fox Caroline S, Peltonen Leena, Groop Leif C, Mooser Vincent, Cupples L Adrienne, Thorsteinsdottir Unnur, Boehnke Michael, Barroso Inês, Van Duijn Cornelia, Dupuis Josée, Watanabe Richard M, Stefansson Kari, McCarthy Mark I, Wareham Nicholas J, Meigs James B, Abecasis Gonçalo R, Variants in MTNR1B influence fasting glucose levels, 10.1038/ng.290
- Lyssenko Valeriya, Nagorny Cecilia L F, Erdos Michael R, Wierup Nils, Jonsson Anna, Spégel Peter, Bugliani Marco, Saxena Richa, Fex Malin, Pulizzi Nicolo, Isomaa Bo, Tuomi Tiinamaija, Nilsson Peter, Kuusisto Johanna, Tuomilehto Jaakko, Boehnke Michael, Altshuler David, Sundler Frank, Eriksson Johan G, Jackson Anne U, Laakso Markku, Marchetti Piero, Watanabe Richard M, Mulder Hindrik, Groop Leif, Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion, 10.1038/ng.288
- Radziuk J., Pye S., Diurnal rhythm in endogenous glucose production is a major contributor to fasting hyperglycaemia in type 2 diabetes. Suprachiasmatic deficit or limit cycle behaviour?, 10.1007/s00125-006-0273-9
- King David P, Zhao Yaliang, Sangoram Ashvin M, Wilsbacher Lisa D, Tanaka Minoru, Antoch Marina P, Steeves Thomas D.L, Vitaterna Martha Hotz, Kornhauser Jon M, Lowrey Phillip L, Turek Fred W, Takahashi Joseph S, Positional Cloning of the Mouse Circadian Clock Gene, 10.1016/s0092-8674(00)80245-7
- Vitaterna M., King D., Chang A., Kornhauser J., Lowrey P., McDonald J., Dove W., Pinto L., Turek F., Takahashi J., Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior, 10.1126/science.8171325
- Bunger Maureen K., Wilsbacher Lisa D., Moran Susan M., Clendenin Cynthia, Radcliffe Laurel A., Hogenesch John B., Simon M.Celeste, Takahashi Joseph S., Bradfield Christopher A., Mop3 Is an Essential Component of the Master Circadian Pacemaker in Mammals, 10.1016/s0092-8674(00)00205-1
- Gekakis N., Role of the CLOCK Protein in the Mammalian Circadian Mechanism, 10.1126/science.280.5369.1564
- Kume Kazuhiko, Zylka Mark J, Sriram Sathyanarayanan, Shearman Lauren P, Weaver David R, Jin Xiaowei, Maywood Elizabeth S, Hastings Michael H, Reppert Steven M, mCRY1 and mCRY2 Are Essential Components of the Negative Limb of the Circadian Clock Feedback Loop, 10.1016/s0092-8674(00)81014-4
- Zheng Binhai, Albrecht Urs, Kaasik Krista, Sage Marijke, Lu Weiqin, Vaishnav Sukeshi, Li Qiu, Sun Zhong Sheng, Eichele Gregor, Bradley Allan, Lee Cheng Chi, Nonredundant Roles of the mPer1 and mPer2 Genes in the Mammalian Circadian Clock, 10.1016/s0092-8674(01)00380-4
- Lee Choogon, Etchegaray Jean-Pierre, Cagampang Felino R.A., Loudon Andrew S.I., Reppert Steven M., Posttranslational Mechanisms Regulate the Mammalian Circadian Clock, 10.1016/s0092-8674(01)00610-9
- Sato Trey K, Yamada Rikuhiro G, Ukai Hideki, Baggs Julie E, Miraglia Loren J, Kobayashi Tetsuya J, Welsh David K, Kay Steve A, Ueda Hiroki R, Hogenesch John B, Feedback repression is required for mammalian circadian clock function, 10.1038/ng1745
- Shearman L. P., Jin X., Lee C., Reppert S. M., Weaver D. R., Targeted Disruption of the mPer3 Gene: Subtle Effects on Circadian Clock Function, 10.1128/mcb.20.17.6269-6275.2000
- Baggs Julie E, Price Tom S, DiTacchio Luciano, Panda Satchidananda, FitzGerald Garret A, Hogenesch John B, Network Features of the Mammalian Circadian Clock, 10.1371/journal.pbio.1000052
- Ueda H. R., Systems Biology of Mammalian Circadian Clocks, 10.1101/sqb.2007.72.047
- Akashi Makoto, Takumi Toru, The orphan nuclear receptor RORα regulates circadian transcription of the mammalian core-clock Bmal1, 10.1038/nsmb925
- Preitner Nicolas, Damiola Francesca, Luis-Lopez-Molina, Zakany Joszef, Duboule Denis, Albrecht Urs, Schibler Ueli, The Orphan Nuclear Receptor REV-ERBα Controls Circadian Transcription within the Positive Limb of the Mammalian Circadian Oscillator, 10.1016/s0092-8674(02)00825-5
- Sato Trey K., Panda Satchidananda, Miraglia Loren J., Reyes Teresa M., Rudic Radu D., McNamara Peter, Naik Kinnery A., FitzGerald Garret A., Kay Steve A., Hogenesch John B., A Functional Genomics Strategy Reveals Rora as a Component of the Mammalian Circadian Clock, 10.1016/j.neuron.2004.07.018
- Triqueneaux Gérard, Thenot Sandrine, Kakizawa Tomoko, Antoch Marina P, Safi Rachid, Takahashi Joseph S, Delaunay Franck, Laudet Vincent, The orphan receptor Rev-erbα gene is a target of the circadian clock pacemaker, 10.1677/jme.1.01554
- Guillaumond Fabienne, Dardente Hugues, Giguère Vincent, Cermakian Nicolas, Differential Control of Bmal1 Circadian Transcription by REV-ERB and ROR Nuclear Receptors, 10.1177/0748730405277232
- Gachon Frédéric, Olela Fabienne Fleury, Schaad Olivier, Descombes Patrick, Schibler Ueli, The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification, 10.1016/j.cmet.2006.04.015
- Maldonado R., Smadja C., Mazucchelli C., Sassone-Corsi P., Altered emotional and locomotor responses in mice deficient in the transcription factor CREM, 10.1073/pnas.96.24.14094
- O'Neill J. S., Maywood E. S., Chesham J. E., Takahashi J. S., Hastings M. H., cAMP-Dependent Signaling as a Core Component of the Mammalian Circadian Pacemaker, 10.1126/science.1152506
- Ripperger Jürgen A, Schibler Ueli, Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions, 10.1038/ng1738
- Akashi M., Tsuchiya Y., Yoshino T., Nishida E., Control of Intracellular Dynamics of Mammalian Period Proteins by Casein Kinase I (CKI ) and CKI in Cultured Cells, 10.1128/mcb.22.6.1693-1703.2002
- Eide E. J., Vielhaber E. L., Hinz W. A., Virshup D. M., The Circadian Regulatory Proteins BMAL1 and Cryptochromes Are Substrates of Casein Kinase I , 10.1074/jbc.m111466200
- Eide E. J., Woolf M. F., Kang H., Woolf P., Hurst W., Camacho F., Vielhaber E. L., Giovanni A., Virshup D. M., Control of Mammalian Circadian Rhythm by CKI -Regulated Proteasome-Mediated PER2 Degradation, 10.1128/mcb.25.7.2795-2807.2005
- Godinho S. I. H., Maywood E. S., Shaw L., Tucci V., Barnard A. R., Busino L., Pagano M., Kendall R., Quwailid M. M., Romero M. R., O'Neill J., Chesham J. E., Brooker D., Lalanne Z., Hastings M. H., Nolan P. M., The After-Hours Mutant Reveals a Role for Fbxl3 in Determining Mammalian Circadian Period, 10.1126/science.1141138
- Reischl Silke, Vanselow Katja, Westermark Pål O., Thierfelder Nadine, Maier Bert, Herzel Hanspeter, Kramer Achim, β-TrCP1-Mediated Degradation of PERIOD2 Is Essential for Circadian Dynamics, 10.1177/0748730407303926
- Shirogane Takahiro, Jin Jianping, Ang Xiaolu L., Harper J. Wade, SCFβ-TRCPControls Clock-dependent Transcription via Casein Kinase 1-dependent Degradation of the Mammalian Period-1 (Per1) Proteinm, 10.1074/jbc.m502862200
- Siepka Sandra M., Yoo Seung-Hee, Park Junghea, Song Weimin, Kumar Vivek, Hu Yinin, Lee Choogon, Takahashi Joseph S., Circadian Mutant Overtime Reveals F-box Protein FBXL3 Regulation of Cryptochrome and Period Gene Expression, 10.1016/j.cell.2007.04.030
- Xu Ying, Padiath Quasar S., Shapiro Robert E., Jones Christopher R., Wu Susan C., Saigoh Noriko, Saigoh Kazumasa, Ptáček Louis J., Fu Ying-Hui, Functional consequences of a CKIδ mutation causing familial advanced sleep phase syndrome, 10.1038/nature03453
- Martinek Sebastian, Inonog Susan, Manoukian Armen S., Young Michael W., A Role for the Segment Polarity Gene shaggy/GSK-3 in the Drosophila Circadian Clock, 10.1016/s0092-8674(01)00383-x
- Hirota T., Lewis W. G., Liu A. C., Lee J. W., Schultz P. G., Kay S. A., A chemical biology approach reveals period shortening of the mammalian circadian clock by specific inhibition of GSK-3 , 10.1073/pnas.0811410106
- Doi Masao, Hirayama Jun, Sassone-Corsi Paolo, Circadian Regulator CLOCK Is a Histone Acetyltransferase, 10.1016/j.cell.2006.03.033
- DeBruyne Jason P, Weaver David R, Reppert Steven M, CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock, 10.1038/nn1884
- DeBruyne Jason P., Weaver David R., Reppert Steven M., Peripheral circadian oscillators require CLOCK, 10.1016/j.cub.2007.05.067
- Bae Kiho, Jin Xiaowei, Maywood Elizabeth S., Hastings Michael H., Reppert Steven M., Weaver David R., Differential Functions of mPer1, mPer2, and mPer3 in the SCN Circadian Clock, 10.1016/s0896-6273(01)00302-6
- Cermakian N., Altered behavioral rhythms and clock gene expression in mice with a targeted mutation in the Period1 gene, 10.1093/emboj/20.15.3967
- Horst Gijsbertus T. J. van der, Muijtjens Manja, Kobayashi Kumiko, Takano Riya, Kanno Shin-ichiro, Takao Masashi, Wit Jan de, Verkerk Anton, Eker Andre P. M., Leenen Dik van, Buijs Ruud, Bootsma Dirk, Hoeijmakers Jan H. J., Yasui Akira, Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms, 10.1038/19323
- Vitaterna M. H., Selby C. P., Todo T., Niwa H., Thompson C., Fruechte E. M., Hitomi K., Thresher R. J., Ishikawa T., Miyazaki J., Takahashi J. S., Sancar A., Differential regulation of mammalian Period genes and circadian rhythmicity by cryptochromes 1 and 2, 10.1073/pnas.96.21.12114
- Okamura H., Suprachiasmatic Nucleus Clock Time in the Mammalian Circadian System, 10.1101/sqb.2007.72.033
- Weaver David R., The Suprachiasmatic Nucleus: A 25-Year Retrospective, 10.1177/074873098128999952
- Ralph M., Foster R., Davis F., Menaker M, Transplanted suprachiasmatic nucleus determines circadian period, 10.1126/science.2305266
- Meyer-Bernstein Elizabeth L., Jetton Amy E., Matsumoto Shin-ichiro, Markuns Jeffrey F., Lehman Michael N., Bittman Eric L., Effects of Suprachiasmatic Transplants on Circadian Rhythms of Neuroendocrine Function in Golden Hamsters**This work was supported by NIH Grants MH-44132, KO2-MH-00914, and F32-HD-07673. A preliminary report of this research was presented at the 23rd Annual Meeting of the Society for Neuroscience (Neurosci Abstr 19:236.17, 1993)., 10.1210/endo.140.1.6428
- Saper Clifford B., Scammell Thomas E., Lu Jun, Hypothalamic regulation of sleep and circadian rhythms, 10.1038/nature04284
- Foster Russell G., Hankins Mark W., Peirson Stuart N., Light, Photoreceptors, and Circadian Clocks, Methods in Molecular Biology (2007) ISBN:9781588294173 p.3-28, 10.1007/978-1-59745-257-1_1
- Sancar Aziz, Regulation of the Mammalian Circadian Clock by Cryptochrome, 10.1074/jbc.r400016200
- Ishida Atsushi, Mutoh Tatsushi, Ueyama Tomoko, Bando Hideki, Masubuchi Satoru, Nakahara Daiichiro, Tsujimoto Gozoh, Okamura Hitoshi, Light activates the adrenal gland: Timing of gene expression and glucocorticoid release, 10.1016/j.cmet.2005.09.009
- Balsalobre A., Resetting of Circadian Time in Peripheral Tissues by Glucocorticoid Signaling, 10.1126/science.289.5488.2344
- Brown Steven A, Fleury-Olela Fabienne, Nagoshi Emi, Hauser Conrad, Juge Cristiana, Meier Christophe A, Chicheportiche Rachel, Dayer Jean-Michel, Albrecht Urs, Schibler Ueli, The Period Length of Fibroblast Circadian Gene Expression Varies Widely among Human Individuals, 10.1371/journal.pbio.0030338
- Fuller P. M., Lu J., Saper C. B., Differential Rescue of Light- and Food-Entrainable Circadian Rhythms, 10.1126/science.1153277
- Gooley Joshua J, Schomer Ashley, Saper Clifford B, The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms, 10.1038/nn1651
- Mieda M., Williams S. C., Richardson J. A., Tanaka K., Yanagisawa M., The dorsomedial hypothalamic nucleus as a putative food-entrainable circadian pacemaker, 10.1073/pnas.0604189103
- Landry G. J., Simon M. M., Webb I. C., Mistlberger R. E., Persistence of a behavioral food-anticipatory circadian rhythm following dorsomedial hypothalamic ablation in rats, 10.1152/ajpregu.00874.2005
- Storch K.-F., Weitz C. J., Daily rhythms of food-anticipatory behavioral activity do not require the known circadian clock, 10.1073/pnas.0902063106
- Sutton G. M., Perez-Tilve D., Nogueiras R., Fang J., Kim J. K., Cone R. D., Gimble J. M., Tschop M. H., Butler A. A., The Melanocortin-3 Receptor Is Required for Entrainment to Meal Intake, 10.1523/jneurosci.3615-08.2008
- Davidson Alec J., Search for the feeding-entrainable circadian oscillator: a complex proposition, 10.1152/ajpregu.00073.2006
- Stephan F.K., The "Other" Circadian System: Food as a Zeitgeber, 10.1177/074873002129002591
- Hussain M. Mahmood, Pan Xiaoyue, Clock genes, intestinal transport and plasma lipid homeostasis, 10.1016/j.tem.2009.01.001
- Yamazaki S., Resetting Central and Peripheral Circadian Oscillators in Transgenic Rats, 10.1126/science.288.5466.682
- Yoo S.-H., Yamazaki S., Lowrey P. L., Shimomura K., Ko C. H., Buhr E. D., Siepka S. M., Hong H.-K., Oh W. J., Yoo O. J., Menaker M., Takahashi J. S., PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues, 10.1073/pnas.0308709101
- Nagoshi Emi, Saini Camille, Bauer Christoph, Laroche Thierry, Naef Felix, Schibler Ueli, Circadian Gene Expression in Individual Fibroblasts, 10.1016/j.cell.2004.11.015
- Curr Biol, 12, 540 (2002)
- Kita Yasuhiro, Shiozawa Masahide, Jin Weihong, Majewski Rebecca R., Besharse Joseph C., Greene Andrew S., Jacob Howard J., Implications of circadian gene expression in kidney, liver and the effects of fasting on pharmacogenomic studies : , 10.1097/00008571-200201000-00008
- McCarthy John J., Andrews Jessica L., McDearmon Erin L., Campbell Kenneth S., Barber Brigham K., Miller Brooke H., Walker John R., Hogenesch John B., Takahashi Joseph S., Esser Karyn A., Identification of the circadian transcriptome in adult mouse skeletal muscle, 10.1152/physiolgenomics.00066.2007
- Panda Satchidananda, Antoch Marina P., Miller Brooke H., Su Andrew I., Schook Andrew B., Straume Marty, Schultz Peter G., Kay Steve A., Takahashi Joseph S., Hogenesch John B., Coordinated Transcription of Key Pathways in the Mouse by the Circadian Clock, 10.1016/s0092-8674(02)00722-5
- Reddy Akhilesh B., Karp Natasha A., Maywood Elizabeth S., Sage Elizabeth A., Deery Michael, O'Neill John S., Wong Gabriel K.Y., Chesham Jo, Odell Mark, Lilley Kathryn S., Kyriacou Charalambos P., Hastings Michael H., Circadian Orchestration of the Hepatic Proteome, 10.1016/j.cub.2006.04.026
- Storch Kai-Florian, Lipan Ovidiu, Leykin Igor, Viswanathan N., Davis Fred C., Wong Wing H., Weitz Charles J., Extensive and divergent circadian gene expression in liver and heart, 10.1038/nature744
- Ueda Hiroki R., Chen Wenbin, Adachi Akihito, Wakamatsu Hisanori, Hayashi Satoko, Takasugi Tomohiro, Nagano Mamoru, Nakahama Ken-ichi, Suzuki Yutaka, Sugano Sumio, Iino Masamitsu, Shigeyoshi Yasufumi, Hashimoto Seiichi, A transcription factor response element for gene expression during circadian night, 10.1038/nature00906
- Yang Hongying, Lavu Siva, Sinclair David A., Nampt/PBEF/Visfatin: A regulator of mammalian health and longevity?, 10.1016/j.exger.2006.06.003
- Zvonic S., Ptitsyn A. A., Conrad S. A., Scott L. K., Floyd Z. E., Kilroy G., Wu X., Goh B. C., Mynatt R. L., Gimble J. M., Characterization of Peripheral Circadian Clocks in Adipose Tissues, 10.2337/diabetes.55.04.06.db05-0873
- Alenghat Theresa, Meyers Katherine, Mullican Shannon E., Leitner Kirstin, Adeniji-Adele Adetoun, Avila Jacqueline, Bućan Maja, Ahima Rexford S., Kaestner Klaus H., Lazar Mitchell A., Nuclear receptor corepressor and histone deacetylase 3 govern circadian metabolic physiology, 10.1038/nature07541
- Teboul Michèle, Guillaumond Fabienne, Gréchez-Cassiau Aline, Delaunay Franck, Minireview: The Nuclear Hormone Receptor Family Round the Clock, 10.1210/me.2007-0521
- Yang Xiaoyong, Downes Michael, Yu Ruth T., Bookout Angie L., He Weimin, Straume Marty, Mangelsdorf David J., Evans Ronald M., Nuclear Receptor Expression Links the Circadian Clock to Metabolism, 10.1016/j.cell.2006.06.050
- Gimble Jeffrey M., Floyd Z. Elizabeth, Fat circadian biology, 10.1152/japplphysiol.00090.2009
- Miller B. H., McDearmon E. L., Panda S., Hayes K. R., Zhang J., Andrews J. L., Antoch M. P., Walker J. R., Esser K. A., Hogenesch J. B., Takahashi J. S., Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation, 10.1073/pnas.0611724104
- Kornmann Benoît, Schaad Olivier, Bujard Hermann, Takahashi Joseph S, Schibler Ueli, System-Driven and Oscillator-Dependent Circadian Transcription in Mice with a Conditionally Active Liver Clock, 10.1371/journal.pbio.0050034
- Rutter J., Regulation of Clock and NPAS2 DNA Binding by the Redox State of NAD Cofactors, 10.1126/science.1060698
- Asher Gad, Gatfield David, Stratmann Markus, Reinke Hans, Dibner Charna, Kreppel Florian, Mostoslavsky Raul, Alt Frederick W., Schibler Ueli, SIRT1 Regulates Circadian Clock Gene Expression through PER2 Deacetylation, 10.1016/j.cell.2008.06.050
- Nakahata Yasukazu, Kaluzova Milota, Grimaldi Benedetto, Sahar Saurabh, Hirayama Jun, Chen Danica, Guarente Leonard P., Sassone-Corsi Paolo, The NAD+-Dependent Deacetylase SIRT1 Modulates CLOCK-Mediated Chromatin Remodeling and Circadian Control, 10.1016/j.cell.2008.07.002
- Cantó Carles, Gerhart-Hines Zachary, Feige Jerome N., Lagouge Marie, Noriega Lilia, Milne Jill C., Elliott Peter J., Puigserver Pere, Auwerx Johan, AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity, 10.1038/nature07813
- Fulco Marcella, Cen Yana, Zhao Po, Hoffman Eric P., McBurney Michael W., Sauve Anthony A., Sartorelli Vittorio, Glucose Restriction Inhibits Skeletal Myoblast Differentiation by Activating SIRT1 through AMPK-Mediated Regulation of Nampt, 10.1016/j.devcel.2008.02.004
- Al-Regaiey Khalid A., Masternak Michal M., Bonkowski Michael, Sun Liou, Bartke Andrzej, Long-Lived Growth Hormone Receptor Knockout Mice: Interaction of Reduced Insulin-Like Growth Factor I/Insulin Signaling and Caloric Restriction, 10.1210/en.2004-1120
- Cohen H. Y., Calorie Restriction Promotes Mammalian Cell Survival by Inducing the SIRT1 Deacetylase, 10.1126/science.1099196
- Nemoto S., Nutrient Availability Regulates SIRT1 Through a Forkhead-Dependent Pathway, 10.1126/science.1101731
- Rodgers Joseph T., Lerin Carlos, Haas Wilhelm, Gygi Steven P., Spiegelman Bruce M., Puigserver Pere, Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1, 10.1038/nature03354
- Haigis M. C., Guarente L. P., Mammalian sirtuins--emerging roles in physiology, aging, and calorie restriction, 10.1101/gad.1467506
- Revollo Javier R., Körner Antje, Mills Kathryn F., Satoh Akiko, Wang Tao, Garten Antje, Dasgupta Biplab, Sasaki Yo, Wolberger Cynthia, Townsend R. Reid, Milbrandt Jeffrey, Kiess Wieland, Imai Shin-ichiro, Nampt/PBEF/Visfatin Regulates Insulin Secretion in β Cells as a Systemic NAD Biosynthetic Enzyme, 10.1016/j.cmet.2007.09.003
- Cell Biochem Biophys, 15, 20 (2009)
- Dali‐Youcef Nassim, Lagouge Marie, Froelich Sébastien, Koehl Christian, Schoonjans Kristina, Auwerx Johan, Sirtuins: The ‘magnificent seven’, function, metabolism and longevity, 10.1080/07853890701408194
- Wang J., Lazar M. A., Bifunctional Role of Rev-erb in Adipocyte Differentiation, 10.1128/mcb.01608-07
- Picard Frédéric, Kurtev Martin, Chung Namjin, Topark-Ngarm Acharawan, Senawong Thanaset, Machado de Oliveira Rita, Leid Mark, McBurney Michael W., Guarente Leonard, Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ, 10.1038/nature02583
- Liu Chang, Li Siming, Liu Tiecheng, Borjigin Jimo, Lin Jiandie D., Transcriptional coactivator PGC-1α integrates the mammalian clock and energy metabolism, 10.1038/nature05767
- Duez Hélène, Staels Bart, The nuclear receptors Rev-erbs and RORs integrate circadian rhythms and metabolism, 10.3132/dvdr.2008.0014
- Turek F. W., Obesity and Metabolic Syndrome in Circadian Clock Mutant Mice, 10.1126/science.1108750
- Kennaway David J., Voultsios Athena, Varcoe Tamara J., Moyer Robert W., Melatonin and activity rhythm responses to light pulses in mice with the Clock mutation, 10.1152/ajpregu.00697.2002
- Kennaway David J., Owens Julie A., Voultsios Athena, Boden Michael J., Varcoe Tamara J., Metabolic homeostasis in mice with disruptedClockgene expression in peripheral tissues, 10.1152/ajpregu.00018.2007
- Oishi Katsutaka, Atsumi Gen-ichi, Sugiyama Shinobu, Kodomari Ikuko, Kasamatsu Manami, Machida Kazuhiko, Ishida Norio, Disrupted fat absorption attenuates obesity induced by a high-fat diet inClockmutant mice, 10.1016/j.febslet.2005.11.063
- Rudic R. Daniel, McNamara Peter, Curtis Anne-Maria, Boston Raymond C, Panda Satchidananda, Hogenesch John B, FitzGerald Garret A, BMAL1 and CLOCK, Two Essential Components of the Circadian Clock, Are Involved in Glucose Homeostasis, 10.1371/journal.pbio.0020377
- Lamia K. A., Storch K.-F., Weitz C. J., Physiological significance of a peripheral tissue circadian clock, 10.1073/pnas.0806717105
- Shimba S., Ishii N., Ohta Y., Ohno T., Watabe Y., Hayashi M., Wada T., Aoyagi T., Tezuka M., Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis, 10.1073/pnas.0502383102
- Yang Shutong, Liu Aiyi, Weidenhammer Adam, Cooksey Robert C., McClain Donald, Kim Myung K., Aguilera Greti, Abel E. Dale, Chung Jay H., The Role ofmPer2Clock Gene in Glucocorticoid and Feeding Rhythms, 10.1210/en.2008-0705
- Green C. B., Douris N., Kojima S., Strayer C. A., Fogerty J., Lourim D., Keller S. R., Besharse J. C., Loss of Nocturnin, a circadian deadenylase, confers resistance to hepatic steatosis and diet-induced obesity, 10.1073/pnas.0702448104
- Masaki T., Chiba S., Yasuda T., Noguchi H., Kakuma T., Watanabe T., Sakata T., Yoshimatsu H., Involvement of Hypothalamic Histamine H1 Receptor in the Regulation of Feeding Rhythm and Obesity, 10.2337/diabetes.53.9.2250
- Arble Deanna M., Bass Joseph, Laposky Aaron D., Vitaterna Martha H., Turek Fred W., Circadian Timing of Food Intake Contributes to Weight Gain, 10.1038/oby.2009.264
- Uebele Victor N., Gotter Anthony L., Nuss Cindy E., Kraus Richard L., Doran Scott M., Garson Susan L., Reiss Duane R., Li Yuxing, Barrow James C., Reger Thomas S., Yang Zhi-Qiang, Ballard Jeanine E., Tang Cuyue, Metzger Joseph M., Wang Sheng-Ping, Koblan Kenneth S., Renger John J., Antagonism of T-type calcium channels inhibits high-fat diet–induced weight gain in mice, 10.1172/jci36954
- Gómez-Abellán P, Hernández-Morante J J, Luján J A, Madrid J A, Garaulet M, Clock genes are implicated in the human metabolic syndrome, 10.1038/sj.ijo.0803689
- Wu X, Xie H, Yu G, Hebert T, Goh B C, Smith S R, Gimble J M, Expression profile of mRNAs encoding core circadian regulatory proteins in human subcutaneous adipose tissue: correlation with age and body mass index, 10.1038/ijo.2009.137
- Chen Jane-Jane, London Irving M., Hemin enhances the differentiation of mouse 3T3 cells to adipocytes, 10.1016/0092-8674(81)90039-8
- Liang Fengxia, Kume Shinji, Koya Daisuke, SIRT1 and insulin resistance, 10.1038/nrendo.2009.101
- Yoshizaki T., Milne J. C., Imamura T., Schenk S., Sonoda N., Babendure J. L., Lu J.-C., Smith J. J., Jirousek M. R., Olefsky J. M., SIRT1 Exerts Anti-Inflammatory Effects and Improves Insulin Sensitivity in Adipocytes, 10.1128/mcb.00705-08
- Ando Hitoshi, Yanagihara Hayato, Hayashi Yohei, Obi Yuri, Tsuruoka Shuichi, Takamura Toshinari, Kaneko Shuichi, Fujimura Akio, Rhythmic Messenger Ribonucleic Acid Expression of Clock Genes and Adipocytokines in Mouse Visceral Adipose Tissue, 10.1210/en.2005-0771
- Xu Kanyan, Zheng Xiangzhong, Sehgal Amita, Regulation of Feeding and Metabolism by Neuronal and Peripheral Clocks in Drosophila, 10.1016/j.cmet.2008.09.006
- Gómez-Santos Cecilia, Gómez-Abellán Purificación, Madrid Juan A., Hernández-Morante Juan J., Lujan Juan A., Ordovas José M., Garaulet Marta, Circadian Rhythm of Clock Genes in Human Adipose Explants, 10.1038/oby.2009.164
- Hernandez-Morante J J, Gomez-Santos C, Milagro F, Campión J, Martínez J A, Zamora S, Garaulet M, Expression of cortisol metabolism-related genes shows circadian rhythmic patterns in human adipose tissue, 10.1038/ijo.2009.4
- Loboda Andrey, Kraft Walter K, Fine Bernard, Joseph Jeffrey, Nebozhyn Michael, Zhang Chunsheng, He Yudong, Yang Xia, Wright Christopher, Morris Mark, Chalikonda Ira, Ferguson Mark, Emilsson Valur, Leonardson Amy, Lamb John, Dai Hongyue, Schadt Eric, Greenberg Howard E, Lum Pek Yee, Diurnal variation of the human adipose transcriptome and the link to metabolic disease, 10.1186/1755-8794-2-7
- Hocking S. L., Chisholm D. J., James D. E., Studies of regional adipose transplantation reveal a unique and beneficial interaction between subcutaneous adipose tissue and the intra-abdominal compartment, 10.1007/s00125-008-0969-0
- Tran Thien T., Yamamoto Yuji, Gesta Stephane, Kahn C. Ronald, Beneficial Effects of Subcutaneous Fat Transplantation on Metabolism, 10.1016/j.cmet.2008.04.004
- Hsu Isabel R, Kim Stella P, Kabir Morvarid, Bergman Richard N, Metabolic syndrome, hyperinsulinemia, and cancer, 10.1093/ajcn/86.3.867s
- Savage David B., Petersen Kitt Falk, Shulman Gerald I., Disordered Lipid Metabolism and the Pathogenesis of Insulin Resistance, 10.1152/physrev.00024.2006
- Harris Ruth B.S., Leibel Rudolph L., Location, Location, Location…, 10.1016/j.cmet.2008.04.007
- Maury E., Brichard S.M., Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome, 10.1016/j.mce.2009.07.031
- Ahima R S, Prabakaran D, Flier J S, Postnatal leptin surge and regulation of circadian rhythm of leptin by feeding. Implications for energy homeostasis and neuroendocrine function., 10.1172/jci1176
- Mingrone Geltrude, Manco Melania, Granato Luigi, Calvani Menotti, Scarfone Antonio, Mora Elena Valera, Greco Aldo V., Vidal Hubert, Castagneto Marco, Ferrannini Eleuterio, Leptin pulsatility in formerly obese women, 10.1096/fj.04-3453fje
- Yildiz B. O., Suchard M. A., Wong M.-L., McCann S. M., Licinio J., Alterations in the dynamics of circulating ghrelin, adiponectin, and leptin in human obesity, 10.1073/pnas.0403465101
- Kershaw Erin E., Flier Jeffrey S., Adipose Tissue as an Endocrine Organ, 10.1210/jc.2004-0395
- Zhang Yiying, Proenca Ricardo, Maffei Margherita, Barone Marisa, Leopold Lori, Friedman Jeffrey M., Positional cloning of the mouse obese gene and its human homologue, 10.1038/372425a0
- Buettner Christoph, Muse Evan D, Cheng Andrew, Chen Linghong, Scherer Thomas, Pocai Alessandro, Su Kai, Cheng Bob, Li Xiasong, Harvey-White Judith, Schwartz Gary J, Kunos George, Rossetti Luciano, Leptin controls adipose tissue lipogenesis via central, STAT3–independent mechanisms, 10.1038/nm1775
- Fulton Stephanie, Pissios Pavlos, Manchon Ramon Pinol, Stiles Linsey, Frank Lauren, Pothos Emmanuel N., Maratos-Flier Eleftheria, Flier Jeffrey S., Leptin Regulation of the Mesoaccumbens Dopamine Pathway, 10.1016/j.neuron.2006.09.006
- Minokoshi Yasuhiko, Kim Young-Bum, Peroni Odile D., Fryer Lee G. D., Müller Corinna, Carling David, Kahn Barbara B., Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase, 10.1038/415339a
- Kadowaki T., Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome, 10.1172/jci29126
- Kahn Barbara B., Alquier Thierry, Carling David, Hardie D. Grahame, AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism, 10.1016/j.cmet.2004.12.003
- Laposky A. D., Bradley M. A., Williams D. L., Bass J., Turek F. W., Sleep-wake regulation is altered in leptin-resistant (db/db) genetically obese and diabetic mice, 10.1152/ajpregu.00026.2008
- Laposky Aaron D., Shelton Jonathan, Bass Joseph, Dugovic Christine, Perrino Nicholas, Turek Fred W., Altered sleep regulation in leptin-deficient mice, 10.1152/ajpregu.00304.2005
- J Appl Physiol, 102, 821 (2007)
- J Clin Endocrinol Metab, 83, 2907 (1998)
- Cavadini G., Petrzilka S., Kohler P., Jud C., Tobler I., Birchler T., Fontana A., TNF- suppresses the expression of clock genes by interfering with E-box-mediated transcription, 10.1073/pnas.0701466104
- VanItallie Theodore B., Sleep and energy balance: interactive homeostatic systems, 10.1016/j.metabol.2006.07.010
- Zhang Kezhong, Kaufman Randal J., From endoplasmic-reticulum stress to the inflammatory response, 10.1038/nature07203
- Int J Obes (Lond), 32, S52 (2008)
- Hosogai N., Fukuhara A., Oshima K., Miyata Y., Tanaka S., Segawa K., Furukawa S., Tochino Y., Komuro R., Matsuda M., Shimomura I., Adipose Tissue Hypoxia in Obesity and Its Impact on Adipocytokine Dysregulation, 10.2337/db06-0911
- Sha Haibo, He Yin, Chen Hui, Wang Cindy, Zenno Anna, Shi Hang, Yang Xiaoyong, Zhang Xinmin, Qi Ling, The IRE1α-XBP1 Pathway of the Unfolded Protein Response Is Required for Adipogenesis, 10.1016/j.cmet.2009.04.009
- Shaw P. J., Correlates of Sleep and Waking in Drosophila melanogaster, 10.1126/science.287.5459.1834
- Kondratov Roman V., Gorbacheva Victoria Y., Antoch Marina P., The Role of Mammalian Circadian Proteins in Normal Physiology and Genotoxic Stress Responses, Current Topics in Developmental Biology (2007) ISBN:9780123737489 p.173-216, 10.1016/s0070-2153(06)78005-x
- Kondratov R. V., Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock, 10.1101/gad.1432206
- Ozcan Lale, Ergin Ayse Seda, Lu Allen, Chung Jason, Sarkar Sumit, Nie Duyu, Myers Martin G., Ozcan Umut, Endoplasmic Reticulum Stress Plays a Central Role in Development of Leptin Resistance, 10.1016/j.cmet.2008.12.004
- Scharf Matthew T., Naidoo Nirinjini, Zimmerman John E., Pack Allan I., The energy hypothesis of sleep revisited, 10.1016/j.pneurobio.2008.08.003
- Cypess Aaron M., Lehman Sanaz, Williams Gethin, Tal Ilan, Rodman Dean, Goldfine Allison B., Kuo Frank C., Palmer Edwin L., Tseng Yu-Hua, Doria Alessandro, Kolodny Gerald M., Kahn C. Ronald, Identification and Importance of Brown Adipose Tissue in Adult Humans, 10.1056/nejmoa0810780
- van Marken Lichtenbelt Wouter D., Vanhommerig Joost W., Smulders Nanda M., Drossaerts Jamie M.A.F.L., Kemerink Gerrit J., Bouvy Nicole D., Schrauwen Patrick, Teule G.J. Jaap, Cold-Activated Brown Adipose Tissue in Healthy Men, 10.1056/nejmoa0808718
- Virtanen Kirsi A., Lidell Martin E., Orava Janne, Heglind Mikael, Westergren Rickard, Niemi Tarja, Taittonen Markku, Laine Jukka, Savisto Nina-Johanna, Enerbäck Sven, Nuutila Pirjo, Functional Brown Adipose Tissue in Healthy Adults, 10.1056/nejmoa0808949
- Holterhus P.-M., Odendahl R., Oesingmann S., Lepler R., Wagner V., Hiort O., Holl R., , Classification of Distinct Baseline Insulin Infusion Patterns in Children and Adolescents With Type 1 Diabetes on Continuous Subcutaneous Insulin Infusion Therapy, 10.2337/dc06-2105
- Aparicio N. J., Puchulu F. E., Gagliardino J. J., Ruiz M., Llorens J. M., Ruiz J., Lamas A., Miguel R. D., Circadian Variation of the Blood Glucose, Plasma Insulin and Human Growth Hormone Levels in Response to an Oral Glucose Load in Normal Subjects, 10.2337/diab.23.2.132
- Bowen Angela J., Diurnal Variation in Glucose Tolerance, 10.1001/archinte.1967.00290210093007
- Carroll K. F., Nestel P. J., Diurnal Variation in Glucose Tolerance and in Insulin Secretion in Man, 10.2337/diab.22.5.333
- Jarrett R. J., Keen H., Diurnal Variation of Oral Glucose Tolerance: a Possible Pointer to the Evolution of Diabetes Mellitus, 10.1136/bmj.2.5653.341
- ROBERTS H. J., AFTERNOON GLUCOSE TOLERANCE TESTING: A KEY TO THE PATHOGENESIS, EARLY DIAGNOSIS AND PROGNOSIS OF DIABETOGENIC HYPERINSULINISM, 10.1111/j.1532-5415.1964.tb05730.x
- SHAPIRO E. TIMOTHY, TILLIL HARTMUT, POLONSKY KENNETH S., FANG VICTOR S., RUBENSTEIN ARTHUR H., CAUTER EVE VAN, Oscillations in Insulin Secretion During Constant Glucose Infusion in Normal Man: Relationship to Changes in Plasma Glucose*, 10.1210/jcem-67-2-307
- CAUTER EVE VAN, DESIR DANIEL, DECOSTER CHRISTINE, FERY FRANCHISE, BALASSE EDMOND O., Nocturnal Decrease in Glucose Tolerance During Constant Glucose Infusion*, 10.1210/jcem-69-3-604
- Lancet, 2, 945 (1972)
- Am J Physiol, 271, E246 (1996)
- la Fleur Susanne E., Kalsbeek Andries, Wortel Joke, Fekkes Madelon L., Buijs Ruud M., A Daily Rhythm in Glucose Tolerance : A Role for the Suprachiasmatic Nucleus, 10.2337/diabetes.50.6.1237
- Olansky L., Janssen R., Welling C., Permutt M. A., Variability of the Insulin Gene in American Blacks With NIDDM: Analysis by Single-Strand Conformational Polymorphisms, 10.2337/diab.41.6.742
- Melani F., Verrillo A., Marasco M., Rivellese A., Osorio J., Bertolini M., Diurnal Variation in Blood Sugar and Serum Insulin in Response to Glucose and/or Glucagon in Healthy Subjects, 10.1055/s-0028-1095597
- Am J Physiol, 257, E459 (1989)
- Arslanian S., Ohki Y., Becker D.J., Drash A.L., Demonstration of a Dawn Phenomenon in Normal Adolescents, 10.1159/000181791
- Bolli G. B., Feo P. D., Cosmo S. D., Perriello G., Ventura M. M., Calcinaro F., Lolli C., Campbell P., Brunetti P., Gerich J. E., Demonstration of a Dawn Phenomenon in Normal Human Volunteers, 10.2337/diab.33.12.1150
- Drug Discov Today Dis Mech, 3, 11 (2006)
- Young Martin E., Wilson Christopher R., Razeghi Peter, Guthrie Patrick H., Taegtmeyer Heinrich, Alterations of the Circadian Clock in the Heart by Streptozotocin-induced Diabetes, 10.1006/jmcc.2001.1504
- Bray M. S., Young M. E., Diurnal variations in myocardial metabolism, 10.1093/cvr/cvn054
- Rudic R. Daniel, McNamara Peter, Reilly Dermot, Grosser Tilo, Curtis Anne-Marie, Price Thomas S., Panda Satchidananda, Hogenesch John B., FitzGerald Garret A., Bioinformatic Analysis of Circadian Gene Oscillation in Mouse Aorta, 10.1161/circulationaha.105.568626
- McNamara Peter, Seo Sang-beom, Rudic Radu Daniel, Sehgal Amita, Chakravarti Debabrata, FitzGerald Garret A., Regulation of CLOCK and MOP4 by Nuclear Hormone Receptors in the Vasculature, 10.1016/s0092-8674(01)00401-9
- Curtis A. M., Cheng Y., Kapoor S., Reilly D., Price T. S., FitzGerald G. A., Circadian variation of blood pressure and the vascular response to asynchronous stress, 10.1073/pnas.0611680104
- Curtis Anne M., Seo Sang-beom, Westgate Elizabeth J., Rudic Radu Daniel, Smyth Emer M., Chakravarti Debabrata, FitzGerald Garret A., McNamara Peter, Histone Acetyltransferase-dependent Chromatin Remodeling and the Vascular Clock, 10.1074/jbc.m311973200
- Westgate Elizabeth J., Cheng Yan, Reilly Dermot F., Price Tom S., Walisser Jacqueline A., Bradfield Christopher A., FitzGerald Garret A., Genetic Components of the Circadian Clock Regulate Thrombogenesis In Vivo, 10.1161/circulationaha.107.739227
- Anea Ciprian B., Zhang Maoxiang, Stepp David W., Simkins G. Bryan, Reed Guy, Fulton David J., Rudic R. Daniel, Vascular Disease in Mice With a Dysfunctional Circadian Clock, 10.1161/circulationaha.108.827477
- Gumz Michelle L., Stow Lisa R., Lynch I. Jeanette, Greenlee Megan M., Rudin Alicia, Cain Brian D., Weaver David R., Wingo Charles S., The circadian clock protein Period 1 regulates expression of the renal epithelial sodium channel in mice, 10.1172/jci36908
- Widlansky Michael E, Gokce Noyan, Keaney John F, Vita Joseph A, The clinical implications of endothelial dysfunction, 10.1016/s0735-1097(03)00994-x
- Hsu Chiao-Po, Oka Shinichi, Shao Dan, Hariharan Nirmala, Sadoshima Junichi, Nicotinamide Phosphoribosyltransferase Regulates Cell Survival Through NAD
+
Synthesis in Cardiac Myocytes, 10.1161/circresaha.109.203703
- Barger Philip M., Brandt Jon M., Leone Teresa C., Weinheimer Carla J., Kelly Daniel P., Deactivation of peroxisome proliferator–activated receptor-α during cardiac hypertrophic growth, 10.1172/jci9056
- Bray M. S., Young M. E., Circadian rhythms in the development of obesity: potential role for the circadian clock within the adipocyte, 10.1111/j.1467-789x.2006.00277.x
- Durgan David J., Trexler Nowice A., Egbejimi Oluwaseun, McElfresh Tracy A., Suk Hee Yun, Petterson Lauren E., Shaw Chad A., Hardin Paul E., Bray Molly S., Chandler Margaret P., Chow Chi-Wing, Young Martin E., The Circadian Clock within the Cardiomyocyte Is Essential for Responsiveness of the Heart to Fatty Acids, 10.1074/jbc.m601704200
- Young Martin E., The circadian clock within the heart: potential influence on myocardial gene expression, metabolism, and function, 10.1152/ajpheart.00582.2005
- Wang Ningning, Yang Guangrui, Jia Zhanjun, Zhang Hui, Aoyagi Toshinori, Soodvilai Sunhapas, Symons J. David, Schnermann Jurgen B., Gonzalez Frank J., Litwin Sheldon E., Yang Tianxin, Vascular PPARγ Controls Circadian Variation in Blood Pressure and Heart Rate through Bmal1, 10.1016/j.cmet.2008.10.009
- Anan F., Masaki T., Fukunaga N., Teshima Y., Iwao T., Kaneda K., Umeno Y., Okada K., Wakasugi K., Yonemochi H., Eshima N., Saikawa T., Yoshimatsu H., Pioglitazone shift circadian rhythm of blood pressure from non-dipper to dipper type in type 2 diabetes mellitus, 10.1111/j.1365-2362.2007.01854.x
- Chew G. T., Watts G. F., Davis T. M.E., Stuckey B. G.A., Beilin L. J., Thompson P. L., Burke V., Currie P. J., Hemodynamic Effects of Fenofibrate and Coenzyme Q10 in Type 2 Diabetic Subjects With Left Ventricular Diastolic Dysfunction, 10.2337/dc08-0118
- Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial, 10.1016/s0140-6736(05)67667-2
- Effect of fenofibrate on progression of coronary-artery disease in type 2 diabetes: the Diabetes Atherosclerosis Intervention Study, a randomised study, 10.1016/s0140-6736(00)04209-4
- VAUGHAN D. E., PAI-1 and atherothrombosis, 10.1111/j.1538-7836.2005.01420.x
- Wang Jing, Yin Lei, Lazar Mitchell A., The Orphan Nuclear Receptor Rev-erbα Regulates Circadian Expression of Plasminogen Activator Inhibitor Type 1, 10.1074/jbc.m607873200
- Maemura Koji, de la Monte Suzanne M., Chin Michael T., Layne Matthew D., Hsieh Chung-Ming, Yet Shaw-Fang, Perrella Mark A., Lee Mu-En, CLIF, a Novel Cycle-like Factor, Regulates the Circadian Oscillation of Plasminogen Activator Inhibitor-1 Gene Expression, 10.1074/jbc.c000629200
- Shoelson Steven E., Herrero Laura, Naaz Afia, Obesity, Inflammation, and Insulin Resistance, 10.1053/j.gastro.2007.03.059
- Marcheva Biliana, Ramsey Kathryn Moynihan, Affinati Alison, Bass Joseph, Clock genes and metabolic disease, 10.1152/japplphysiol.00698.2009
- Ando Hitoshi, Oshima Yasuo, Yanagihara Hayato, Hayashi Yohei, Takamura Toshinari, Kaneko Shuichi, Fujimura Akio, Profile of rhythmic gene expression in the livers of obese diabetic KK-Ay mice, 10.1016/j.bbrc.2006.06.044
- Barnea Maayan, Madar Zecharia, Froy Oren, High-Fat Diet Delays and Fasting Advances the Circadian Expression of Adiponectin Signaling Components in Mouse Liver, 10.1210/en.2008-0944
- Kamada Yoshihiro, Takehara Tetsuo, Hayashi Norio, Adipocytokines and liver disease, 10.1007/s00535-008-2213-6
- Gälman Cecilia, Angelin Bo, Rudling Mats, Bile Acid Synthesis in Humans Has a Rapid Diurnal Variation That Is Asynchronous With Cholesterol Synthesis, 10.1053/j.gastro.2005.09.009
- Duez Hélène, van der Veen Jelske N., Duhem Christian, Pourcet Benoît, Touvier Thierry, Fontaine Coralie, Derudas Bruno, Baugé Eric, Havinga Rick, Bloks Vincent W., Wolters Henk, van der Sluijs Fjodor H., Vennström Björn, Kuipers Folkert, Staels Bart, Regulation of Bile Acid Synthesis by the Nuclear Receptor Rev-erbα, 10.1053/j.gastro.2008.05.035
- Le Martelot Gwendal, Claudel Thierry, Gatfield David, Schaad Olivier, Kornmann Benoît, Sasso Giuseppe Lo, Moschetta Antonio, Schibler Ueli, REV-ERBα Participates in Circadian SREBP Signaling and Bile Acid Homeostasis, 10.1371/journal.pbio.1000181
- Albrecht U., Bordon A., Schmutz I., Ripperger J., The Multiple Facets of Per2, 10.1101/sqb.2007.72.001
- Ando H., Takamura T., Matsuzawa-Nagata N., Shima K. R., Eto T., Misu H., Shiramoto M., Tsuru T., Irie S., Fujimura A., Kaneko S., Clock gene expression in peripheral leucocytes of patients with type 2 diabetes, 10.1007/s00125-008-1194-6
Bibliographic reference |
Maury, Eléonore ; Ramsey, Kathryn Moynihan ; Bass, Joseph. Circadian rhythms and metabolic syndrome: from experimental genetics to human disease.. In: Circulation research, Vol. 106, no.3, p. 447-462 (2010) |
Permanent URL |
http://hdl.handle.net/2078.1/216734 |