Naccarato, Francesco
[UCL]
Ricci, Francesco
[UCL]
Suntivich, Jin
[Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA]
Hautier, Geoffroy
[UCL]
Wirtz, Ludger
[Physics and Materials Science Research Unit, University of Luxembourg, Luxembourg]
Rignanese, Gian-Marco
[UCL]
Materials combining both a high refractive index and a wide band gap are of great interest for optoelectronic and sensor applications. However, these two properties are typically described by an inverse correlation with high refractive index appearing in small gap materials and vice versa. Here, we conduct a first-principles high-throughput study on more than 4000 semiconductors (with a special focus on oxides). Our data confirm the general inverse trend between refractive index and band gap but interesting outliers are also identified. The data are then analyzed through a simple model involving two main descriptors: the average optical gap and the effective frequency. The former can be determined directly from the electronic structure of the compounds, but the latter cannot. This calls for further analysis in order to obtain a predictive model. Nonetheless, it turns out that the negative effect of a large band gap on the refractive index can be counterbalanced in two ways:(i) by limiting the difference between the direct band gap and the average optical gap which can be realized by a narrow distribution in energy of the optical transitions and (ii) by increasing the effective frequency which can be achieved through either a high number of transitions from the top of the valence band to the bottom of the conduction band or a high average probability for these transitions. Focusing on oxides, we use our data to investigate how the chemistry influences this inverse relationship and rationalize why certain classes of materials would perform better. Our findings can be used to search for new compounds in many optical applications both in the linear and nonlinear regime (waveguides, optical modulators, laser, frequency converter, etc.).
- Rondinelli James M., Kioupakis Emmanouil, Predicting and Designing Optical Properties of Inorganic Materials, 10.1146/annurev-matsci-070214-021150
- Odom Teri W., Dickson Robert M., Duncan Michael A., Tan Weihong, Shining a Light on the Molecular and Nanoscopic Worlds, 10.1021/acsphotonics.5b00337
- Miller Robert C., OPTICAL SECOND HARMONIC GENERATION IN PIEZOELECTRIC CRYSTALS, 10.1063/1.1754022
- R. K. Kirschman, High Temperature Electronics (1999)
- Tripathy S.K., Refractive indices of semiconductors from energy gaps, 10.1016/j.optmat.2015.04.026
- Hohenberg P., Kohn W., Inhomogeneous Electron Gas, 10.1103/physrev.136.b864
- Kohn W., Sham L. J., Self-Consistent Equations Including Exchange and Correlation Effects, 10.1103/physrev.140.a1133
- Baroni Stefano, Giannozzi Paolo, Testa Andrea, Green’s-function approach to linear response in solids, 10.1103/physrevlett.58.1861
- Gonze Xavier, Perturbation expansion of variational principles at arbitrary order, 10.1103/physreva.52.1086
- Hautier Geoffroy, Jain Anubhav, Ong Shyue Ping, From the computer to the laboratory: materials discovery and design using first-principles calculations, 10.1007/s10853-012-6424-0
- Curtarolo Stefano, Hart Gus L. W., Nardelli Marco Buongiorno, Mingo Natalio, Sanvito Stefano, Levy Ohad, The high-throughput highway to computational materials design, 10.1038/nmat3568
- Jain Anubhav, Shin Yongwoo, Persson Kristin A., Computational predictions of energy materials using density functional theory, 10.1038/natrevmats.2015.4
- Morgan Dane, Ceder Gerbrand, Curtarolo Stefano, High-throughput and data mining with ab initio methods, 10.1088/0957-0233/16/1/039
- Hansen Katja, Montavon Grégoire, Biegler Franziska, Fazli Siamac, Rupp Matthias, Scheffler Matthias, von Lilienfeld O. Anatole, Tkatchenko Alexandre, Müller Klaus-Robert, Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies, 10.1021/ct400195d
- Yim Kanghoon, Yong Youn, Lee Joohee, Lee Kyuhyun, Nahm Ho-Hyun, Yoo Jiho, Lee Chanhee, Seong Hwang Cheol, Han Seungwu, Novel high-κ dielectrics for next-generation electronic devices screened by automated ab initio calculations, 10.1038/am.2015.57
- Petousis Ioannis, Chen Wei, Hautier Geoffroy, Graf Tanja, Schladt Thomas D., Persson Kristin A., Prinz Fritz B., Benchmarking density functional perturbation theory to enable high-throughput screening of materials for dielectric constant and refractive index, 10.1103/physrevb.93.115151
- Petousis Ioannis, Mrdjenovich David, Ballouz Eric, Liu Miao, Winston Donald, Chen Wei, Graf Tanja, Schladt Thomas D., Persson Kristin A., Prinz Fritz B., High-throughput screening of inorganic compounds for the discovery of novel dielectric and optical materials, 10.1038/sdata.2016.134
- Jain Anubhav, Ong Shyue Ping, Hautier Geoffroy, Chen Wei, Richards William Davidson, Dacek Stephen, Cholia Shreyas, Gunter Dan, Skinner David, Ceder Gerbrand, Persson Kristin A., Commentary: The Materials Project: A materials genome approach to accelerating materials innovation, 10.1063/1.4812323
- Ong Shyue Ping, Wang Lei, Kang Byoungwoo, Ceder Gerbrand, Li−Fe−P−O2 Phase Diagram from First Principles Calculations, 10.1021/cm702327g
- Chen Hailong, Hautier Geoffroy, Jain Anubhav, Moore Charles, Kang Byoungwoo, Doe Robert, Wu Lijun, Zhu Yimei, Tang Yuanzhi, Ceder Gerbrand, Carbonophosphates: A New Family of Cathode Materials for Li-Ion Batteries Identified Computationally, 10.1021/cm203243x
- Hautier Geoffroy, Ong Shyue Ping, Jain Anubhav, Moore Charles J., Ceder Gerbrand, Accuracy of density functional theory in predicting formation energies of ternary oxides from binary oxides and its implication on phase stability, 10.1103/physrevb.85.155208
- P. A. Cox, Transition Metal Oxides: An Introduction to Their Electronic Structure and Properties (2010)
- Kresse G., Furthmüller J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, 10.1016/0927-0256(96)00008-0
- Gajdoš M., Hummer K., Kresse G., Furthmüller J., Bechstedt F., Linear optical properties in the projector-augmented wave methodology, 10.1103/physrevb.73.045112
- Perdew John P., Burke Kieron, Ernzerhof Matthias, Generalized Gradient Approximation Made Simple, 10.1103/physrevlett.77.3865
- Dudarev S. L., Botton G. A., Savrasov S. Y., Humphreys C. J., Sutton A. P., Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study, 10.1103/physrevb.57.1505
- Jain Anubhav, Hautier Geoffroy, Ong Shyue Ping, Moore Charles J., Fischer Christopher C., Persson Kristin A., Ceder Gerbrand, Formation enthalpies by mixing GGA and GGA+Ucalculations, 10.1103/physrevb.84.045115
- Ricci Francesco, Chen Wei, Aydemir Umut, Snyder G. Jeffrey, Rignanese Gian-Marco, Jain Anubhav, Hautier Geoffroy, An ab initio electronic transport database for inorganic materials, 10.1038/sdata.2017.85
- Agapito Luis A., Curtarolo Stefano, Buongiorno Nardelli Marco, Reformulation ofDFT+Uas a Pseudohybrid Hubbard Density Functional for Accelerated Materials Discovery, 10.1103/physrevx.5.011006
- Chan M. K. Y., Ceder G., Efficient Band Gap Prediction for Solids, 10.1103/physrevlett.105.196403
- Ravindra N. M., Auluck Sushil, Srivastava V. K., On the Penn Gap in Semiconductors, 10.1002/pssb.2220930257
- Moss T. S., Relations between the Refractive Index and Energy Gap of Semiconductors, 10.1002/pssb.2221310202
- Hervé P., Vandamme L.K.J., General relation between refractive index and energy gap in semiconductors, 10.1016/1350-4495(94)90026-4
- Reddy R. R., Anjaneyulu S., Analysis of the Moss and Ravindra relations, 10.1002/pssb.2221740238
- V. Kumar, Indian J. Pure Appl. Phys., 48, 571 (2010)
- G. F. Bassani, Electronic States and Optical Transitions in Solids (1975)
- A. Fox, Optical Properties of Solids (2001)
- Hautier Geoffroy, Miglio Anna, Waroquiers David, Rignanese Gian-Marco, Gonze Xavier, How Does Chemistry Influence Electron Effective Mass in Oxides? A High-Throughput Computational Analysis, 10.1021/cm404079a
- R. W. Boyd, Nonlinear Optics (2008)
- Tran T. Thao, Yu Hongwei, Rondinelli James M., Poeppelmeier Kenneth R., Halasyamani P. Shiv, Deep Ultraviolet Nonlinear Optical Materials, 10.1021/acs.chemmater.6b02366
- Evans Christopher C., Bradley Jonathan D. B., Martí-Panameño Erwin A., Mazur Eric, Mixed two- and three-photon absorption in bulk rutile (TiO_2) around 800 nm, 10.1364/oe.20.003118
- Evans Christopher C., Shtyrkova Katia, Bradley Jonathan D. B., Reshef Orad, Ippen Erich, Mazur Eric, Spectral broadening in anatase titanium dioxide waveguides at telecommunication and near-visible wavelengths, 10.1364/oe.21.018582
- Evans Christopher C., Shtyrkova Katia, Reshef Orad, Moebius Michael, Bradley Jonathan D. B., Griesse-Nascimento Sarah, Ippen Erich, Mazur Eric, Multimode phase-matched third-harmonic generation in sub-micrometer-wide anatase TiO_2 waveguides, 10.1364/oe.23.007832
- Waroquiers David, Gonze Xavier, Rignanese Gian-Marco, Welker-Nieuwoudt Cathrin, Rosowski Frank, Göbel Michael, Schenk Stephan, Degelmann Peter, André Rute, Glaum Robert, Hautier Geoffroy, Statistical Analysis of Coordination Environments in Oxides, 10.1021/acs.chemmater.7b02766
- SCOTT DAVID W., On optimal and data-based histograms, 10.1093/biomet/66.3.605
- Evans Christopher C., Liu Chengyu, Suntivich Jin, Low-loss titanium dioxide waveguides and resonators using a dielectric lift-off fabrication process, 10.1364/oe.23.011160
- Evans Christopher C., Liu Chengyu, Suntivich Jin, TiO2 Nanophotonic Sensors for Efficient Integrated Evanescent Raman Spectroscopy, 10.1021/acsphotonics.6b00314
- Zaanen J., Sawatzky G. A., Allen J. W., Band gaps and electronic structure of transition-metal compounds, 10.1103/physrevlett.55.418
- W. A. Harrison, Electronic Structure and the Properties of Solids: the Physics of the Chemical Bond (1989)
- Abdullah M. M., Rajab Fahd M., Al-Abbas Saleh M., Structural and optical characterization of Cr2O3 nanostructures: Evaluation of its dielectric properties, 10.1063/1.4867012
- J. M. Senior, Optical Fiber Communications Principles and Practice (2009)
- Bazzi R., Brenier A., Perriat P., Tillement O., Optical properties of neodymium oxides at the nanometer scale, 10.1016/j.jlumin.2004.09.120
- Baroni Stefano, Resta Raffaele, Ab initiocalculation of the macroscopic dielectric constant in silicon, 10.1103/physrevb.33.7017
- Giannozzi Paolo, de Gironcoli Stefano, Pavone Pasquale, Baroni Stefano, Ab initiocalculation of phonon dispersions in semiconductors, 10.1103/physrevb.43.7231
- Gonze Xavier, First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm, 10.1103/physrevb.55.10337
- Gonze Xavier, Lee Changyol, Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory, 10.1103/physrevb.55.10355
- Adler Stephen L., Quantum Theory of the Dielectric Constant in Real Solids, 10.1103/physrev.126.413
- Wiser Nathan, Dielectric Constant with Local Field Effects Included, 10.1103/physrev.129.62
Bibliographic reference |
Naccarato, Francesco ; Ricci, Francesco ; Suntivich, Jin ; Hautier, Geoffroy ; Wirtz, Ludger ; et. al. Searching for materials with high refractive index and wide band gap: A first-principles high-throughput study. In: Physical Review Materials, Vol. 3, no. 4, p. 044602 (2019) |
Permanent URL |
http://hdl.handle.net/2078.1/215084 |