Elissalde, C.
[ICMCB-CNRS, Université de Bordeaux, Pessac, France]
Chung, U. C.
[ICMCB-CNRS, Université de Bordeaux, Pessac, France]
Roulland, F.
[IPCMS, Université de Strasbourg, Strasbourg, France]
Berthelot, R.
[ICGM-CNRS, Université de Montpellier, Montpellier, France]
Artemenko, A.
[ICMCB-CNRS, Université de Bordeaux, Pessac, France]
Majimel, J.
[ICMCB-CNRS, Université de Bordeaux, Pessac, France]
Basov, S.
[ICMCB-CNRS, Université de Bordeaux, Pessac, France; BSMA-IMCN, Université catholique de Louvain, Louvain-la-Neuve, Belgium]
Piraux, Luc
[UCL]
Nysten, Bernard
[UCL]
Mornet, S.
[ICMCB-CNRS, Université de Bordeaux, Pessac, France]
Aymonier, C.
[ICMCB-CNRS, Université de Bordeaux, Pessac, France]
Estournès, C.
[CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, Toulouse, France]
Maglione, M.
[ICMCB-CNRS, Université de Bordeaux, Pessac, France]
Interfaces are a major issue when designing ferroelectric nanostructured materials with tailored properties. In a context of integration and multifunctionality in the field of electronics, several strategies have been developed to control the microstructure and defect chemistry of interfaces that strongly impact the macroscopic properties. The suitability of the core-shell approaches that allow a subtle tuning of interface phenomena at different scales has been widely demonstrated. We focus here on the flexibility of the coreshell approach devoted to the processing of nanostructured ferroelectric composites. Our strategy relies on the use of advanced synthesis processes to design ferroelectric grains coated with shells of different nature, morphology and crystallinity. Typical examples will be reviewed with a specific attention on their impact on both microstructure and dielectric properties. Our approach, based also on the use of fast sintering technique, provides a guidance to design 3D bulk nanostructured ferroelectrics while controlling and/or exploiting size, interface and defects chemistry. The contribution of specific spectroscopies to probe interfacial chemistry and defects is underlined. The high density of interfaces in core-shell materials is obviously an advantage to target additional functionality such as magneto-electric coupling. This is illustrated in 3D composites and one dimensional nanostructures that coaxially combine electric and magnetic materials. The core-shell approach described here could be transferred to a much broader range of materials covering many functionalities provided a deeper understanding of the interfaces at the atomic scale is achieved and a further development of low temperature processing is reached.
Ihlefeld Jon F., Harris David T., Keech Ryan, Jones Jacob L., Maria Jon-Paul, Trolier-McKinstry Susan, Scaling Effects in Perovskite Ferroelectrics: Fundamental Limits and Process-Structure-Property Relations, 10.1111/jace.14387
Nanoscale Ferroelectrics and Multiferroics : Key Processing and Characterization Issues, and Nanoscale Effects, ISBN:9781118935743, 10.1002/9781118935743
Elissalde C., Chung U.-C., Philippot G., Lesseur J., Berthelot R., Sallagoity D., Albino M., Epherre R., Chevallier G., Buffière S., Weibel A., Bernard D., Majimel J., Aymonier C., Mornet S., Estournès C., Maglione M., Innovative architectures in ferroelectric multi-materials: Chemistry, interfaces and strain, 10.1142/s2010135x15300017
AGRAWAL SHASHNK, GUO R., AGRAWAL D. K., BHALLA A. S., NEURGAONKAR R. R., MURRAY C. B., Dielectric Tunability of BST:MgO Composites Prepared by Using Nano Particles, 10.1080/07315170490901472
Lesseur J., Bernard D., Chung U.-C., Estournès C., Maglione M., Elissalde C., 3D mapping of anisotropic ferroelectric/dielectric composites, 10.1016/j.jeurceramsoc.2014.07.032
Padurariu Leontin, Curecheriu Lavinia, Galassi Carmen, Mitoseriu Liliana, Tailoring non-linear dielectric properties by local field engineering in anisotropic porous ferroelectric structures, 10.1063/1.4729878
Maglione M., Philippot G., Levasseur D., Payan S., Aymonier C., Elissalde C., Defect chemistry in ferroelectric perovskites: long standing issues and recent advances, 10.1039/c5dt01897h
Buscaglia V., Nanoscale Ferroelectrics And Multiferroics: Key Processing and Characterization Issues, and Nanoscale Effects (2016)
Slipenyuk A. M., Kondakova I. V., Glinchuk M. D., Laguta V. V., Investigation of ferroelectric nanopowders by EPR method, 10.1002/pssc.200673877
Bovtun V., Kamba S., Veljko S., Nuzhnyy D., Kroupa J., Savinov M., Vaněk P., Petzelt J., Holc J., Kosec M., Amorín H., Alguero M., Broadband dielectric spectroscopy of phonons and polar nanoclusters inPbMg1/3Nb2/3O3−35%PbTiO3ceramics: Grain size effects, 10.1103/physrevb.79.104111
Petzelt Jan, Nuzhnyy Dmitry, Bovtun Viktor, Savinov Maxim, Kempa Martin, Rychetsky Ivan, Broadband dielectric and conductivity spectroscopy of inhomogeneous and composite conductors : Dielectric and conductivity spectroscopy of inhomogeneous and composite conductors, 10.1002/pssa.201329288
Armstrong Timothy R., Buchanan Relva C., Influence of Core-Shell Grains on the Internal Stress State and Permittivity Response of Zirconia-Modified Barium Titanate, 10.1111/j.1151-2916.1990.tb05190.x
Randall C.A., Wang S.F., Laubscher D., Dougherty J.P., Huebner W., Structure property relationships in core-shell BaTiO3–LiF ceramics, 10.1557/jmr.1993.0871
Kishi Hiroshi, Okino Yoshikazu, Honda Mutsumi, Iguchi Yoshiaki, Imaeda Motoaki, Takahashi Yoshinao, Ohsato Hitoshi, Okuda Takashi, The Effect of MgO and Rare-Earth Oxide on Formation Behavior of Core-Shell Structure inBaTiO3, 10.1143/jjap.36.5954
Airimioaei M., Buscaglia M. T., Tredici I., Anselmi-Tamburini U., Ciomaga C. E., Curecheriu L., Bencan A., Buscaglia V., Mitoseriu L., SrTiO3–BaTiO3 nanocomposites with temperature independent permittivity and linear tunability fabricated using field-assisted sintering from chemically synthesized powders, 10.1039/c7tc02629c
Chaim R., Levin M., Shlayer A., Estournes C., Sintering and densification of nanocrystalline ceramic oxide powders: a review, 10.1179/174367508x297812
Maglia Filippo, Tredici Ilenia G., Anselmi-Tamburini Umberto, Densification and properties of bulk nanocrystalline functional ceramics with grain size below 50nm, 10.1016/j.jeurceramsoc.2012.12.004
Orrù Roberto, Licheri Roberta, Locci Antonio Mario, Cincotti Alberto, Cao Giacomo, Consolidation/synthesis of materials by electric current activated/assisted sintering, 10.1016/j.mser.2008.09.003
Mornet S., Elissalde C., Hornebecq V., Bidault O., Duguet E., Brisson A., Maglione M., Controlled Growth of Silica Shell on Ba0.6Sr0.4TiO3Nanoparticles Used As Precursors of Ferroelectric Composites, 10.1021/cm050884r
Legallais M., Fourcade S., Chung U.-C., Michau D., Maglione M., Mauvy F., Elissalde C., Fast re-oxidation kinetics and conduction pathway in Spark Plasma Sintered ferroelectric ceramics, 10.1016/j.jeurceramsoc.2017.07.026
Nuzhnyy Dmitry, Vaněk Přemysl, Petzelt Jan, Bovtun Viktor, Kempa Martin, Gregora Ivan, Savinov Maxim, Krupková Radmila, Studnicka Václav, Bursík Josef, Samoylovich Mihail, Schranz Wilfried, Properties of BaTiO3 confined in nanoporous Vycor and artificial opal silica, 10.2298/pac1003215n
Nuzhnyy D, Petzelt J, Rychetsky I, Buscaglia V, Buscaglia M T, Nanni P, THz and IR dielectric response of BaTiO3core–shell composites: evidence for interdiffusion, 10.1088/0022-3727/42/15/155408
NUZHNYY D., PETZELT J., BOVTUN V., KEMPA M., SAVINOV M., ELISSALDE C., CHUNG U.-C., MICHAU D., ESTOURNÈS C., MAGLIONE M., HIGH-FREQUENCY DIELECTRIC SPECTROSCOPY OF BaTiO3 CORE — SILICA SHELL NANOCOMPOSITES: PROBLEM OF INTERDIFFUSION, 10.1142/s2010135x11000367
Han Hyuksu, Voisin Christophe, Guillemet-Fritsch Sophie, Dufour Pascal, Tenailleau Christophe, Turner Christopher, Nino Juan C., Origin of colossal permittivity in BaTiO3 via broadband dielectric spectroscopy, 10.1063/1.4774099
Homes C. C., Optical Response of High-Dielectric-Constant Perovskite-Related Oxide, 10.1126/science.1061655
Li Jinglei, Li Fei, Li Chao, Yang Guang, Xu Zhuo, Zhang Shujun, Evidences of grain boundary capacitance effect on the colossal dielectric permittivity in (Nb + In) co-doped TiO2 ceramics, 10.1038/srep08295
Crandles D. A., Yee S. M. M., Savinov M., Nuzhnyy D., Petzelt J., Kamba S., Prokeš J., Electrode effects in dielectric spectroscopy measurements on (Nb+In) co-doped TiO2, 10.1063/1.4947185
Petzelt J., Rychetsky I., Nuzhnyy D., Dynamic Ferroelectric–Like Softening Due to the Conduction in Disordered and Inhomogeneous Systems: Giant Permittivity Phenomena, 10.1080/00150193.2012.671732
Nuzhnyy D, Buixaderas E, Rychetsky I, Kadlec C, Petzelt J, Uršič H, Malič B, Percolation in the dielectric function of Pb(Zr, Ti)O3– Pb2Ru2O6.5ferroelectric – metal composites, 10.1088/0022-3727/47/49/495301
Anoufa M., Kiat J. M., Kornev I., Bogicevic C., Energy harvesting in core-shell ferroelectric ceramics: Theoretical approach and practical conclusions, 10.1063/1.4789804
Anoufa M., Kiat J. M., Bogicevic C., Electrocaloric effect in core-shell ferroelectric ceramics: Theoretical approach and practical conclusions, 10.1063/1.4934742
Kiat J. M., Hehlen B., Anoufa M., Bogicevic C., Curfs C., Boyer B., Al-Sabbagh M., Porcher F., Al-Zein A., Lowering of ground state induced by core-shell structure in strontium titanate, 10.1103/physrevb.93.144117
Chung U-C., Elissalde C., Mornet S., Maglione M., Estournès C., Controlling internal barrier in low loss BaTiO3 supercapacitors, 10.1063/1.3076125
Artemenko A., Elissalde C., Chung U.-C., Estournès C., Mornet S., Bykov I., Maglione M., Linking hopping conductivity to giant dielectric permittivity in oxides, 10.1063/1.3495779
Laguta V. V., Slipenyuk A. M., Bykov I. P., Glinchuk M. D., Maglione M., Michau D., Rosa J., Jastrabik L., Electron spin resonance investigation of oxygen-vacancy-related defects in BaTiO3 thin films, 10.1063/1.1954900
Elissalde Catherine, Chung U-Chan, Artemenko Alla, Estournès Claude, Costes Romain, Paté Michel, Ganne Jean-Pierre, Waechter Sabine, Maglione Mario, Stoichiometry and Grain Boundaries Control by Spark Plasma Sintering in Ba0.6Sr0.4TiO3:Mn/MgO Composites, 10.1111/j.1551-2916.2012.05311.x
Aymonier Cyril, Philippot Gilles, Erriguible Arnaud, Marre Samuel, Playing with chemistry in supercritical solvents and the associated technologies for advanced materials by design, 10.1016/j.supflu.2017.12.021
Marre Samuel, Erriguible Arnaud, Perdomo Arturo, Cansell Francois, Marias Frederic, Aymonier Cyril, Kinetically Controlled Formation of Supported Nanoparticles in Low Temperature Supercritical Media for the Development of Advanced Nanostructured Materials, 10.1021/jp809533n
Darr Jawwad A., Zhang Jingyi, Makwana Neel M., Weng Xiaole, Continuous Hydrothermal Synthesis of Inorganic Nanoparticles: Applications and Future Directions, 10.1021/acs.chemrev.6b00417
Giroire B., Marre S., Garcia A., Cardinal T., Aymonier C., Continuous supercritical route for quantum-confined GaN nanoparticles, 10.1039/c5re00039d
Théodet Manuel, Quilfen Cyril, Martínez Cristina, Aymonier Cyril, Continuous supercritical synthesis of unsupported and high specific surface area catalyst precursors for deep-hydrodesulfurization, 10.1016/j.supflu.2016.07.002
Slostowski Cedric, Marre Samuel, Dagault Philippe, Babot Odile, Toupance Thierry, Aymonier Cyril, CeO 2 nanopowders as solid sorbents for efficient CO 2 capture/release processes, 10.1016/j.jcou.2017.03.023
Dumas Angela, Claverie Marie, Slostowski Cédric, Aubert Guillaume, Careme Cristel, Le Roux Christophe, Micoud Pierre, Martin François, Aymonier Cyril, Cover Picture: Fast-Geomimicking using Chemistry in Supercritical Water (Angew. Chem. Int. Ed. 34/2016), 10.1002/anie.201605535
Majimel Mélanie, Marre Samuel, Garrido Elsa, Aymonier Cyril, Supercritical Fluid Chemical Deposition as an Alternative Process to CVD for the Surface Modification of Materials, 10.1002/cvde.201106921
Erkey Can, Preparation of metallic supported nanoparticles and films using supercritical fluid deposition, 10.1016/j.supflu.2008.10.019
Aymonier Cyril, Elissalde Catherine, Reveron Helen, Weill François, Maglione Mario, Cansell François, Supercritical Fluid Technology of Nanoparticle Coating for New Ceramic Materials, 10.1166/jnn.2005.147
Anselmi-Tamburini U., Gennari S., Garay J.E., Munir Z.A., Fundamental investigations on the spark plasma sintering/synthesis process, 10.1016/j.msea.2004.11.019
Manière C., Pavia A., Durand L., Chevallier G., Afanga K., Estournès C., Finite-element modeling of the electro-thermal contacts in the spark plasma sintering process, 10.1016/j.jeurceramsoc.2015.10.033
Nan Ce-Wen, Bichurin M. I., Dong Shuxiang, Viehland D., Srinivasan G., Multiferroic magnetoelectric composites: Historical perspective, status, and future directions, 10.1063/1.2836410
Martin L W, Crane S P, Chu Y-H, Holcomb M B, Gajek M, Huijben M, Yang C-H, Balke N, Ramesh R, Multiferroics and magnetoelectrics: thin films and nanostructures, 10.1088/0953-8984/20/43/434220
Schileo Giorgio, Recent developments in ceramic multiferroic composites based on core/shell and other heterostructures obtained by sol–gel routes, 10.1016/j.progsolidstchem.2013.09.001
Spaldin N., Mater. Sci, 309, 391 (2005)
Eerenstein W., Mathur N. D., Scott J. F., Multiferroic and magnetoelectric materials, 10.1038/nature05023
Van Run A. M. J. G., Terrell D. R., Scholing J. H., An in situ grown eutectic magnetoelectric composite material : Part 2 Physical properties, 10.1007/bf00540771
Islam Rashed Adnan, Priya Shashank, ME response of cofired trilayer magnetoelectric composites with partial texturing, 10.1007/s10853-009-3744-9
Zavaliche F., Zheng H., Mohaddes-Ardabili L., Yang S. Y., Zhan Q., Shafer P., Reilly E., Chopdekar R., Jia Y., Wright P., Schlom D. G., Suzuki Y., Ramesh R., Electric Field-Induced Magnetization Switching in Epitaxial Columnar Nanostructures, 10.1021/nl051406i
Yao Fang, Xu Liqun, Lin Baoping, Fu Guo-Dong, Preparation and applications of functional nanofibers based on the combination of electrospinning, controlled radical polymerization and ‘Click Chemistry’, 10.1039/c0nr00016g
Xie Shuhong, Ma Feiyue, Liu Yuanming, Li Jiangyu, Multiferroic CoFe2O4–Pb(Zr0.52Ti0.48)O3 core-shell nanofibers and their magnetoelectric coupling, 10.1039/c1nr10288e
Andrew Jennifer S., Starr Justin D., Budi Maeve A.K., Prospects for nanostructured multiferroic composite materials, 10.1016/j.scriptamat.2013.09.023
Liu Ming, Li Xin, Imrane Hassan, Chen Yajie, Goodrich Trevor, Cai Zhuhua, Ziemer Katherine S., Huang Jian Y., Sun Nian X., Synthesis of ordered arrays of multiferroic NiFe2O4-Pb(Zr0.52Ti0.48)O3 core-shell nanowires, 10.1063/1.2722043
Narayanan T. N., Mandal B. P., Tyagi A. K., Kumarasiri A., Zhan Xaiobo, Hahm Myung Gwan, Anantharaman M. R., Lawes G., Ajayan P. M., Hybrid Multiferroic Nanostructure with Magnetic–Dielectric Coupling, 10.1021/nl300849u
Sallagoity D., Elissalde C., Majimel J., Berthelot R., Chung U. Chan, Penin N., Maglione M., Antohe V. A., Hamoir G., Abreu Araujo F., Piraux L., Synthesis and magnetic properties of Ni–BaTiO3 nanocable arrays within ordered anodic alumina templates, 10.1039/c4tc02261k
B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials, 2nd ed., edited by L. Hanzo (Hoboken, NJ: Wiley, 2009), pp 141–183.
Hua Zhenghe, Yang Pan, Huang Hongbo, Wan Jianguo, Yu Zhong-Zhen, Yang Shaoguang, Lu Mu, Gu Benxi, Du Yeiwei, Sol–gel template synthesis and characterization of magnetoelectric CoFe2O4/Pb(Zr0.52Ti0.48)O3 nanotubes, 10.1016/j.matchemphys.2007.08.023
Tang Dan, Zeng Zhiqiang, Zhou Qingwei, Su Shaoqiang, Hu Die, Li Peilian, Lin Xiaozi, Gao Xingsen, Lu Xubing, Wang Xin, Jin Mingliang, Zhou Guofu, Zhang Zhang, Liu Junming, Ordered multiferroic CoFe2O4–Pb(Zr0.52Ti0.48)O3 coaxial nanotube arrays with enhanced magnetoelectric coupling, 10.1039/c7ra04183g
Fu Bi, Lu Ruie, Gao Kun, Yang Yaodong, Wang Yaping, Substrate clamping effect onto magnetoelectric coupling in multiferroic BaTiO3-CoFe2O4 core-shell nanofibers via coaxial electrospinning, 10.1209/0295-5075/112/27002
Sreenivasulu Gollapudi, Zhang Jitao, Zhang Ru, Popov Maksym, Petrov Vladimir, Srinivasan Gopalan, Multiferroic Core-Shell Nanofibers, Assembly in a Magnetic Field, and Studies on Magneto-Electric Interactions, 10.3390/ma11010018
Shaw T. M., Trolier-McKinstry S., McIntyre P. C., The Properties of Ferroelectric Films at Small Dimensions, 10.1146/annurev.matsci.30.1.263
Junquera Javier, Ghosez Philippe, Critical thickness for ferroelectricity in perovskite ultrathin films, 10.1038/nature01501
Ahn C. H., Ferroelectricity at the Nanoscale: Local Polarization in Oxide Thin Films and Heterostructures, 10.1126/science.1092508
Encinas-Oropesa A., Demand M., Piraux L., Huynen I., Ebels U., Dipolar interactions in arrays of nickel nanowires studied by ferromagnetic resonance, 10.1103/physrevb.63.104415
Sallagoity D., Elissalde C., Majimel J., Maglione M., Antohe Vlad. A., Abreu Araujo F., Pereira de Sá P. M., Basov S., Piraux L., Synthesis of dense arrays of multiferroic CoFe2O4–PbZr0.52Ti0.48O3 core/shell nanocables, 10.1039/c6ra19548b
Kim Jongok, Yang Sun A, Choi Yong Chan, Han Jin Kyu, Jeong Keum Ok, Yun Yong Ju, Kim Dong Jik, Yang Sang Mo, Yoon Doohee, Cheong Hyeonsik, Chang Ki-Seog, Noh Tae Won, Bu Sang Don, Ferroelectricity in Highly Ordered Arrays of Ultra-Thin-Walled Pb(Zr,Ti)O3Nanotubes Composed of Nanometer-Sized Perovskite Crystallites, 10.1021/nl080240t
Gruverman Alexei, Auciello Orlando, Tokumoto Hiroshi, IMAGING AND CONTROL OF DOMAIN STRUCTURES IN FERROELECTRIC THIN FILMS VIA SCANNING FORCE MICROSCOPY, 10.1146/annurev.matsci.28.1.101
Bibliographic reference
Elissalde, C. ; Chung, U. C. ; Roulland, F. ; Berthelot, R. ; Artemenko, A. ; et. al. Specific core-shell approaches and related properties in nanostructured ferroelectric ceramics. In: Ferroelectrics, Vol. 532, no.1, p. 138-159 (2018)