User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

Validation and clinical implementation of an accurate Monte Carlo code for pencil beam scanning proton therapy

  • Open access
  • PDF
  • 1.62 M
  1. Paganetti Harald, Jiang Honggu, Parodi Katia, Slopsema Roelf, Engelsman Martijn, Clinical implementation of full Monte Carlo dose calculation in proton beam therapy, 10.1088/0031-9155/53/17/023
  2. Paganetti Harald, Range uncertainties in proton therapy and the role of Monte Carlo simulations, 10.1088/0031-9155/57/11/r99
  3. Grassberger Clemens, Daartz Juliane, Dowdell Stephen, Ruggieri Thomas, Sharp Greg, Paganetti Harald, Quantification of Proton Dose Calculation Accuracy in the Lung, 10.1016/j.ijrobp.2014.02.023
  4. Farr J. B., Dessy F., De Wilde O., Bietzer O., Schönenberg D., Fundamental radiological and geometric performance of two types of proton beam modulated discrete scanning systems : Fundamental performance of two proton scanning systems, 10.1118/1.4807643
  5. Pedroni E, Scheib S, Böhringer T, Coray A, Grossmann M, Lin S, Lomax A, Experimental characterization and physical modelling of the dose distribution of scanned proton pencil beams, 10.1088/0031-9155/50/3/011
  6. Matysiak Witold, Yeung Daniel, Slopsema Roelf, Li Zuofeng, Evaluation of the range shifter model for proton pencil-beam scanning for the Eclipse v.11 treatment planning system, 10.1120/jacmp.v17i2.5798
  7. Hirayama Shusuke, Takayanagi Taisuke, Fujii Yusuke, Fujimoto Rintaro, Fujitaka Shinichiro, Umezawa Masumi, Nagamine Yoshihiko, Hosaka Masahiro, Yasui Keisuke, Omachi Chihiro, Toshito Toshiyuki, Evaluation of the influence of double and triple Gaussian proton kernel models on accuracy of dose calculations for spot scanning technique : Evaluation of double and triple Gaussian kernel models, 10.1118/1.4942386
  8. Shen Jiajian, Lentz Jarrod M., Hu Yanle, Liu Wei, Morales Danairis Hernandez, Stoker Joshua B., Bues Martin, Using field size factors to characterize the in-air fluence of a proton machine with a range shifter, 10.1186/s13014-017-0783-2
  9. Grassberger C, Lomax Anthony, Paganetti H, Characterizing a proton beam scanning system for Monte Carlo dose calculation in patients, 10.1088/0031-9155/60/2/633
  10. Grevillot L, Bertrand D, Dessy F, Freud N, Sarrut D, A Monte Carlo pencil beam scanning model for proton treatment plan simulation using GATE/GEANT4, 10.1088/0031-9155/56/16/008
  11. Kimstrand Peter, Traneus Erik, Ahnesjö Anders, Grusell Erik, Glimelius Bengt, Tilly Nina, A beam source model for scanned proton beams, 10.1088/0031-9155/52/11/015
  12. Sawakuchi Gabriel O, Zhu X Ronald, Poenisch Falk, Suzuki Kazumichi, Ciangaru George, Titt Uwe, Anand Aman, Mohan Radhe, Gillin Michael T, Sahoo Narayan, Experimental characterization of the low-dose envelope of spot scanning proton beams, 10.1088/0031-9155/55/12/013
  13. Perl J., Shin J., Schümann J., Faddegon B., Paganetti H., TOPAS: An innovative proton Monte Carlo platform for research and clinical applications : TOPAS: An innovative proton Monte Carlo platform, 10.1118/1.4758060
  14. Lin Liyong, Huang Sheng, Kang Minglei, Hiltunen Petri, Vanderstraeten Reynald, Lindberg Jari, Siljamaki Sami, Wareing Todd, Davis Ian, Barnett Allen, McGhee John, Simone Charles B., Solberg Timothy D., McDonough James E., Ainsley Christopher, A benchmarking method to evaluate the accuracy of a commercial proton monte carlo pencil beam scanning treatment planning system, 10.1002/acm2.12043
  15. Saini Jatinder, Maes Dominic, Egan Alexander, Bowen Stephen R, St James Sara, Janson Martin, Wong Tony, Bloch Charles, Dosimetric evaluation of a commercial proton spot scanning Monte-Carlo dose algorithm: comparisons against measurements and simulations, 10.1088/1361-6560/aa82a5
  16. Souris Kevin, Lee John Aldo, Sterpin Edmond, Fast multipurpose Monte Carlo simulation for proton therapy using multi- and many-core CPU architectures : Fast multipurpose MC simulation for PT using CPU, 10.1118/1.4943377
  17. Giantsoudi Drosoula, Schuemann Jan, Jia Xun, Dowdell Stephen, Jiang Steve, Paganetti Harald, Validation of a GPU-based Monte Carlo code (gPMC) for proton radiation therapy: clinical cases study, 10.1088/0031-9155/60/6/2257
  18. Wan Chan Tseung H., Ma J., Beltran C., A fast GPU-based Monte Carlo simulation of proton transport with detailed modeling of nonelastic interactions : Fast GPU-based proton transport Monte Carlo, 10.1118/1.4921046
  19. Jia Xun, Schümann Jan, Paganetti Harald, Jiang Steve B, GPU-based fast Monte Carlo dose calculation for proton therapy, 10.1088/0031-9155/57/23/7783
  20. Chang Joe Y., Zhang Xiaodong, Knopf Antje, Li Heng, Mori Shinichiro, Dong Lei, Lu Hsiao-Ming, Liu Wei, Badiyan Shahed N., Both Stephen, Meijers Arturs, Lin Liyong, Flampouri Stella, Li Zuofeng, Umegaki Kikuo, Simone Charles B., Zhu Xiaorong R., Consensus Guidelines for Implementing Pencil-Beam Scanning Proton Therapy for Thoracic Malignancies on Behalf of the PTCOG Thoracic and Lymphoma Subcommittee, 10.1016/j.ijrobp.2017.05.014
  21. Lin Liyong, Souris Kevin, Kang Minglei, Glick Adam, Lin Haibo, Huang Sheng, Stützer Kristin, Janssens Guillaume, Sterpin Edmond, Lee John A., Solberg Timothy D., McDonough James E., Simone Charles B., Ben-Josef Edgar, Evaluation of motion mitigation using abdominal compression in the clinical implementation of pencil beam scanning proton therapy of liver tumors, 10.1002/mp.12040
  22. Grassberger Clemens, Dowdell Stephen, Lomax Antony, Sharp Greg, Shackleford James, Choi Noah, Willers Henning, Paganetti Harald, Motion Interplay as a Function of Patient Parameters and Spot Size in Spot Scanning Proton Therapy for Lung Cancer, 10.1016/j.ijrobp.2013.01.024
  23. Lin Liyong, Ainsley Christopher G, Solberg Timothy D, McDonough James E, Experimental characterization of two-dimensional spot profiles for two proton pencil beam scanning nozzles, 10.1088/0031-9155/59/2/493
  24. Courant E.D, Snyder H.S, Theory of the alternating-gradient synchrotron, 10.1016/0003-4916(58)90012-5
  25. Lomax Antony J., Böhringer Terence, Bolsi Alessandra, Coray Doelf, Emert Frank, Goitein Gudrun, Jermann Martin, Lin Shixiong, Pedroni Eros, Rutz Hanspeter, Stadelmann Otto, Timmermann Beate, Verwey Jorn, Weber Damien C., Treatment planning and verification of proton therapy using spot scanning: Initial experiences, 10.1118/1.1779371
  26. Fracchiolla F, Lorentini S, Widesott L, Schwarz M, Characterization and validation of a Monte Carlo code for independent dose calculation in proton therapy treatments with pencil beam scanning, 10.1088/0031-9155/60/21/8601
  27. Berger MJ Coursey JS Zucker MA Chang J Stopping powers and ranges for protons national institute of standards and technology (NIST)
  28. Grevillot Loïc, Frisson Thibault, Zahra Nabil, Bertrand Damien, Stichelbaut Frédéric, Freud Nicolas, Sarrut David, Optimization of GEANT4 settings for Proton Pencil Beam Scanning simulations using GATE, 10.1016/j.nimb.2010.07.011
  29. Gomà C, Lorentini S, Meer D, Safai S, Proton beam monitor chamber calibration, 10.1088/0031-9155/59/17/4961
  30. Lin Liyong, Kang Minglei, Solberg Timothy D, Ainsley Christopher G, McDonough James E, Experimentally validated pencil beam scanning source model in TOPAS, 10.1088/0031-9155/59/22/6859
  31. Sawakuchi Gabriel O., Mirkovic Dragan, Perles Luis A., Sahoo Narayan, Zhu X. Ron, Ciangaru George, Suzuki Kazumichi, Gillin Michael T., Mohan Radhe, Titt Uwe, An MCNPX Monte Carlo model of a discrete spot scanning proton beam therapy nozzle : MCNPX model of a scanning proton therapy nozzle, 10.1118/1.3476458
  32. Gottschalk Bernard, Cascio Ethan W, Daartz Juliane, Wagner Miles S, On the nuclear halo of a proton pencil beam stopping in water, 10.1088/0031-9155/60/14/5627
  33. Sawakuchi Gabriel O, Titt Uwe, Mirkovic Dragan, Ciangaru George, Zhu X Ronald, Sahoo Narayan, Gillin Michael T, Mohan Radhe, Monte Carlo investigation of the low-dose envelope from scanned proton pencil beams, 10.1088/0031-9155/55/3/011
  34. Zhu X. R., Poenisch F., Lii M., Sawakuchi G. O., Titt U., Bues M., Song X., Zhang X., Li Y., Ciangaru G., Li H., Taylor M. B., Suzuki K., Mohan R., Gillin M. T., Sahoo N., Commissioning dose computation models for spot scanning proton beams in water for a commercially available treatment planning system : Commissioning dose models for spot scanning proton beams, 10.1118/1.4798229
  35. Shen Jiajian, Liu Wei, Stoker Joshua, Ding Xiaoning, Anand Aman, Hu Yanle, Herman Michael G., Bues Martin, An efficient method to determine double Gaussian fluence parameters in the eclipse ™ proton pencil beam model : Efficient method to determine proton fluence for PBS, 10.1118/1.4967485
  36. Lin Liyong, Kang Minglei, Solberg Timothy D., Mertens Thierry, Baumer Christian, Ainsley Christopher G., McDonough James E., Use of a novel two-dimensional ionization chamber array for pencil beam scanning proton therapy beam quality assurance, 10.1120/jacmp.v16i3.5323
  37. Bazalova Magdalena, Beaulieu Luc, Palefsky Steven, Verhaegen Frank, Correction of CT artifacts and its influence on Monte Carlo dose calculations : CT artifacts and MC dose calculations, 10.1118/1.2736777
  38. Rossi Bruno, Greisen Kenneth, Cosmic-Ray Theory, 10.1103/revmodphys.13.240
  39. ICRU Nuclear data for neutron and proton radiotherapy and for radiation protection 2000
  40. Varian, Eclipse Proton Altorithm Reference Guide (2015)
  41. Schaffner Barbara, Pedroni Eros, Lomax Antony, Dose calculation models for proton treatment planning using a dynamic beam delivery system: an attempt to include density heterogeneity effects in the analytical dose calculation, 10.1088/0031-9155/44/1/004
  42. Titt Uwe, Mirkovic Dragan, Sawakuchi Gabriel O, Perles Luis A, Newhauser Wayne D, Taddei Phillip J, Mohan Radhe, Adjustment of the lateral and longitudinal size of scanned proton beam spots using a pre-absorber to optimize penumbrae and delivery efficiency, 10.1088/0031-9155/55/23/s10
  43. Shen Jiajian, Liu Wei, Anand Aman, Stoker Joshua B., Ding Xiaoning, Fatyga Mirek, Herman Michael G., Bues Martin, Impact of range shifter material on proton pencil beam spot characteristics : Range shifter material for proton pencil beam, 10.1118/1.4908208
  44. Winterhalter C, Lomax A, Oxley D, Weber D C, Safai S, A study of lateral fall-off (penumbra) optimisation for pencil beam scanning (PBS) proton therapy, 10.1088/1361-6560/aaa2ad
Bibliographic reference Huang, Sheng ; Kang, Minglei ; Souris, Kevin ; Ainsley, Christopher ; Solberg, Timothy D. ; et. al. Validation and clinical implementation of an accurate Monte Carlo code for pencil beam scanning proton therapy. In: Journal of Applied Clinical Medical Physics, Vol. 19, no.5, p. 558-572 (2018)
Permanent URL http://hdl.handle.net/2078.1/210437