User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

Apoptosis of tumor-infiltrating T lymphocytes: a new immune checkpoint mechanism

  • Open access
  • PDF
  • 1.92 M
  1. Schadendorf Dirk, Hodi F. Stephen, Robert Caroline, Weber Jeffrey S., Margolin Kim, Hamid Omid, Patt Debra, Chen Tai-Tsang, Berman David M., Wolchok Jedd D., Pooled Analysis of Long-Term Survival Data From Phase II and Phase III Trials of Ipilimumab in Unresectable or Metastatic Melanoma, 10.1200/jco.2014.56.2736
  2. Bellmunt Joaquim, de Wit Ronald, Vaughn David J., Fradet Yves, Lee Jae-Lyun, Fong Lawrence, Vogelzang Nicholas J., Climent Miguel A., Petrylak Daniel P., Choueiri Toni K., Necchi Andrea, Gerritsen Winald, Gurney Howard, Quinn David I., Culine Stéphane, Sternberg Cora N., Mai Yabing, Poehlein Christian H., Perini Rodolfo F., Bajorin Dean F., Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma, 10.1056/nejmoa1613683
  3. Ferris Robert L., Blumenschein George, Fayette Jerome, Guigay Joel, Colevas A. Dimitrios, Licitra Lisa, Harrington Kevin, Kasper Stefan, Vokes Everett E., Even Caroline, Worden Francis, Saba Nabil F., Iglesias Docampo Lara C., Haddad Robert, Rordorf Tamara, Kiyota Naomi, Tahara Makoto, Monga Manish, Lynch Mark, Geese William J., Kopit Justin, Shaw James W., Gillison Maura L., Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck, 10.1056/nejmoa1602252
  4. Motzer Robert J., Escudier Bernard, McDermott David F., George Saby, Hammers Hans J., Srinivas Sandhya, Tykodi Scott S., Sosman Jeffrey A., Procopio Giuseppe, Plimack Elizabeth R., Castellano Daniel, Choueiri Toni K., Gurney Howard, Donskov Frede, Bono Petri, Wagstaff John, Gauler Thomas C., Ueda Takeshi, Tomita Yoshihiko, Schutz Fabio A., Kollmannsberger Christian, Larkin James, Ravaud Alain, Simon Jason S., Xu Li-An, Waxman Ian M., Sharma Padmanee, Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma, 10.1056/nejmoa1510665
  5. Gettinger Scott N., Horn Leora, Gandhi Leena, Spigel David R., Antonia Scott J., Rizvi Naiyer A., Powderly John D., Heist Rebecca S., Carvajal Richard D., Jackman David M., Sequist Lecia V., Smith David C., Leming Philip, Carbone David P., Pinder-Schenck Mary C., Topalian Suzanne L., Hodi F. Stephen, Sosman Jeffrey A., Sznol Mario, McDermott David F., Pardoll Drew M., Sankar Vindira, Ahlers Christoph M., Salvati Mark, Wigginton Jon M., Hellmann Matthew D., Kollia Georgia D., Gupta Ashok K., Brahmer Julie R., Overall Survival and Long-Term Safety of Nivolumab (Anti–Programmed Death 1 Antibody, BMS-936558, ONO-4538) in Patients With Previously Treated Advanced Non–Small-Cell Lung Cancer, 10.1200/jco.2014.58.3708
  6. Horton Brendan L., Williams Jason B., Cabanov Alexandra, Spranger Stefani, Gajewski Thomas F., Intratumoral CD8 + T-cell Apoptosis Is a Major Component of T-cell Dysfunction and Impedes Antitumor Immunity , 10.1158/2326-6066.cir-17-0249
  7. Zhu Jingjing, Powis de Tenbossche Céline G., Cané Stefania, Colau Didier, van Baren Nicolas, Lurquin Christophe, Schmitt-Verhulst Anne-Marie, Liljeström Peter, Uyttenhove Catherine, Van den Eynde Benoit J., Resistance to cancer immunotherapy mediated by apoptosis of tumor-infiltrating lymphocytes, 10.1038/s41467-017-00784-1
  8. Itoh Naoto, Yonehara Shin, Ishii Ai, Yonehara Minako, Mizushima Sei-Ichi, Sameshima Masazumi, Hase Atsushi, Seto Yoshiyuki, Nagata Shigekazu, The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis, 10.1016/0092-8674(91)90614-5
  9. Pan G., The Receptor for the Cytotoxic Ligand TRAIL, 10.1126/science.276.5309.111
  10. Sheridan J. P., Control of TRAIL-Induced Apoptosis by a Family of Signaling and Decoy Receptors, 10.1126/science.277.5327.818
  11. Loetscher H, Schlaeger EJ, Lahm HW, Pan YC, Lesslauer W, Brockhaus M (1990) Purification and partial amino acid sequence analysis of two distinct tumor necrosis factor receptors from HL60 cells. J Biol Chem 265(33):20131–20138
  12. Chinnaiyan Arul M., O'Rourke Karen, Yu Guo-Liang, Lyons Robert H., Garg Manish, Duan D. Roxanne, Xing Lily, Gentz Reiner, Ni Jian, Dixit Vishva M., Signal Transduction by DR3, a Death Domain-Containing Receptor Related to TNFR-1 and CD95, 10.1126/science.274.5289.990
  13. Pan Guohua, Ni Jian, Yu Guo-liang, Wei Ying-Fei, Dixit Vishva M, TRUNDD, a new member of the TRAIL receptor family that antagonizes TRAIL signalling, 10.1016/s0014-5793(98)00135-5
  14. Suda Takashi, Takahashi Tomohiro, Golstein Pierre, Nagata Shigekazu, Molecular cloning and expression of the fas ligand, a novel member of the tumor necrosis factor family, 10.1016/0092-8674(93)90326-l
  15. Griffith T. S., Brunner T., Fletcher S. M., Green D. R., Ferguson T. A., Fas Ligand-Induced Apoptosis as a Mechanism of Immune Privilege, 10.1126/science.270.5239.1189
  16. Nagata Shigekazu, Apoptosis by Death Factor, 10.1016/s0092-8674(00)81874-7
  17. Krammer Peter H., CD95's deadly mission in the immune system, 10.1038/35037728
  18. Choi C, Park JY, Lee J, Lim JH, Shin EC, Ahn YS, Kim CH, Kim SJ, Kim JD, Choi IS, Choi IH (1999) Fas ligand and Fas are expressed constitutively in human astrocytes and the expression increases with IL-1, IL-6, TNF-alpha, or IFN-gamma. J Immunol 162(4):1889–1895
  19. Tanaka M., Suda T., Takahashi T., Nagata S., Expression of the functional soluble form of human fas ligand in activated lymphocytes., 10.1002/j.1460-2075.1995.tb07096.x
  20. O’ Reilly Lorraine A., Tai Lin, Lee Lily, Kruse Elizabeth A., Grabow Stephanie, Fairlie W. Douglas, Haynes Nicole M., Tarlinton David M., Zhang Jian-Guo, Belz Gabrielle T., Smyth Mark J., Bouillet Philippe, Robb Lorraine, Strasser Andreas, Membrane-bound Fas ligand only is essential for Fas-induced apoptosis, 10.1038/nature08402
  21. Nagata Shigekazu, Suda Takashi, Fas and Fas ligand: lpr and gld mutations, 10.1016/0167-5699(95)80069-7
  22. Ramsdell Fred, Seaman Michael S., Miller Robert E., Tough Teresa W., Alderson Mark R., Lynch David H., gld/gld mice are unable to express a functional ligand for Fas, 10.1002/eji.1830240422
  23. Alderson M. R., Fas ligand mediates activation-induced cell death in human T lymphocytes, 10.1084/jem.181.1.71
  24. Hahne M., Rimoldi D., Schroter M., Romero P., Schreier M., French L. E., Schneider P., Bornand T., Fontana A., Lienard D., Cerottini J.-C., Tschopp J., Melanoma Cell Expression of Fas(Apo-1/CD95) Ligand: Implications for Tumor Immune Escape, 10.1126/science.274.5291.1363
  25. Restifo Nicholas P., Not so Fas: Re-evaluating the mechanisms of immune privilege and tumor escape, 10.1038/74955
  26. Seino Ken-Ichiro, Kayagaki Nobuhiko, Okumura Ko, Yagita Hideo, Antitumor effect of locally produced CD95 ligand, 10.1038/nm0297-165
  27. Arai H., Gordon D., Nabel E. G., Nabel G. J., Gene transfer of Fas ligand induces tumor regression in vivo, 10.1073/pnas.94.25.13862
  28. Ryan Aideen E., Shanahan Fergus, O'Connell Joe, Houston Aileen M., Addressing the “Fas Counterattack” Controversy: Blocking Fas Ligand Expression Suppresses Tumor Immune Evasion of Colon CancerIn vivo, 10.1158/0008-5472.can-05-1462
  29. Jackson Christine E., Fischer Roxanne E., Hsu Amy P., Anderson Stacie M., Choi Youngnim, Wang Jin, Dale Janet K., Fleisher Thomas A., Middelton Lindsay A., Sneller Michael C., Lenardo Michael J., Straus Stephen E., Puck Jennifer M., Autoimmune Lymphoproliferative Syndrome with Defective Fas: Genotype Influences Penetrance, 10.1086/302333
  30. Boselli Daniela, Losana Giuliana, Bernabei Paola, Bosisio Daniela, Drysdale Pamela, Kiessling Rolf, Gaston John. S. H., Lammas David, Casanova Jean-Laurent, Kumararatne Dinakantha S., Novelli Francesco, IFN-γ regulates Fas ligand expression in human CD4+ T lymphocytes and controls their anti-mycobacterial cytotoxic functions, 10.1002/eji.200636541
  31. Le Gallo Matthieu, Poissonnier Amanda, Blanco Patrick, Legembre Patrick, CD95/Fas, Non-Apoptotic Signaling Pathways, and Kinases, 10.3389/fimmu.2017.01216
  32. Hinrichs C. S., Borman Z. A., Cassard L., Gattinoni L., Spolski R., Yu Z., Sanchez-Perez L., Muranski P., Kern S. J., Logun C., Palmer D. C., Ji Y., Reger R. N., Leonard W. J., Danner R. L., Rosenberg S. A., Restifo N. P., Adoptively transferred effector cells derived from naive rather than central memory CD8+ T cells mediate superior antitumor immunity, 10.1073/pnas.0907448106
  33. Klebanoff Christopher A., Scott Christopher D., Leonardi Anthony J., Yamamoto Tori N., Cruz Anthony C., Ouyang Claudia, Ramaswamy Madhu, Roychoudhuri Rahul, Ji Yun, Eil Robert L., Sukumar Madhusudhanan, Crompton Joseph G., Palmer Douglas C., Borman Zachary A., Clever David, Thomas Stacy K., Patel Shashankkumar, Yu Zhiya, Muranski Pawel, Liu Hui, Wang Ena, Marincola Francesco M., Gros Alena, Gattinoni Luca, Rosenberg Steven A., Siegel Richard M., Restifo Nicholas P., Memory T cell–driven differentiation of naive cells impairs adoptive immunotherapy, 10.1172/jci81217
  34. Kawasaki M, Kuwano K, Nakanishi Y, Hagimoto N, Takayama K, Pei X.-H, Maeyama T, Yoshimi M, Hara N, Analysis of Fas and Fas ligand expression and function in lung cancer cell lines, 10.1016/s0959-8049(99)00332-9
  35. Ito Y, Monden M, Takeda T, Eguchi H, Umeshita K, Nagano H, Nakamori S, Dono K, Sakon M, Nakamura M, Tsujimoto M, Nakahara M, Nakao K, Yokosaki Y, Matsuura N, The status of Fas and Fas ligand expression can predict recurrence of hepatocellular carcinoma, 10.1054/bjoc.1999.1065
  36. Bennett MW, O’Connell J, O’Sullivan GC, Brady C, Roche D, Collins JK, Shanahan F (1998) The Fas counterattack in vivo: apoptotic depletion of tumor-infiltrating lymphocytes associated with Fas ligand expression by human esophageal carcinoma. J Immunol 160(11):5669–5675
  37. O'Connell J., The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand, 10.1084/jem.184.3.1075
  38. Walker Paul R, Saas Philippe, Dietrich Pierre-Yves, Tumor expression of Fas ligand (CD95L) and the consequences, 10.1016/s0952-7915(98)80225-2
  39. Wolfers Joseph, Lozier Anne, Raposo Graça, Regnault Armelle, Théry Clotilde, Masurier Carole, Flament Caroline, Pouzieux Stéphanie, Faure Florence, Tursz Thomas, Angevin Eric, Amigorena Sebastian, Zitvogel Laurence, Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming, 10.1038/85438
  40. Denzer K, Kleijmeer MJ, Heijnen HF, Stoorvogel W, Geuze HJ (2000) Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J Cell Sci 113(Pt 19):3365–3374
  41. Raposo G., B lymphocytes secrete antigen-presenting vesicles, 10.1084/jem.183.3.1161
  42. Abusamra Ashraf J., Zhong Zhaohui, Zheng Xiufen, Li Mu, Ichim Thomas E., Chin Joseph L., Min Wei-Ping, Tumor exosomes expressing Fas ligand mediate CD8+ T-cell apoptosis, 10.1016/j.bcmd.2005.07.001
  43. Lin Huan-Ching, Lai Po-Yin, Lin Yu-ping, Huang Jyun-Yuan, Yang Bei-Chang, Fas Ligand Enhances Malignant Behavior of Tumor Cells through Interaction with Met, Hepatocyte Growth Factor Receptor, in Lipid Rafts, 10.1074/jbc.m111.326058
  44. Merz Christian, Strecker Alexander, Sykora Jaromir, Hill Oliver, Fricke Harald, Angel Peter, Gieffers Christian, Peterziel Heike, Neutralization of the CD95 ligand by APG101 inhibits invasion of glioma cells in vitro : , 10.1097/cad.0000000000000237
  45. Kleber Susanne, Sancho-Martinez Ignacio, Wiestler Benedict, Beisel Alexandra, Gieffers Christian, Hill Oliver, Thiemann Meinolf, Mueller Wolf, Sykora Jaromir, Kuhn Andreas, Schreglmann Nina, Letellier Elisabeth, Zuliani Cecilia, Klussmann Stefan, Teodorczyk Marcin, Gröne Hermann-Josef, Ganten Tom M., Sültmann Holger, Tüttenberg Jochen, von Deimling Andreas, Regnier-Vigouroux Anne, Herold-Mende Christel, Martin-Villalba Ana, Yes and PI3K Bind CD95 to Signal Invasion of Glioblastoma, 10.1016/j.ccr.2008.02.003
  46. Steller Ernst J.A., Borel Rinkes Inne H.M., Kranenburg Onno, How CD95 stimulates invasion, 10.4161/cc.10.22.18290
  47. Wisniewski Pawel, Ellert-Miklaszewska Aleksandra, Kwiatkowska Aneta, Kaminska Bozena, Non-apoptotic Fas signaling regulates invasiveness of glioma cells and modulates MMP-2 activity via NFκB-TIMP-2 pathway, 10.1016/j.cellsig.2009.09.016
  48. Wild-Bode C, Weller M, Rimner A, Dichgans J, Wick W (2001) Sublethal irradiation promotes migration and invasiveness of glioma cells: implications for radiotherapy of human glioblastoma. Cancer Res 61(6):2744–2750
  49. Wick W., Fricke H., Junge K., Kobyakov G., Martens T., Heese O., Wiestler B., Schliesser M. G., von Deimling A., Pichler J., Vetlova E., Harting I., Debus J., Hartmann C., Kunz C., Platten M., Bendszus M., Combs S. E., A Phase II, Randomized, Study of Weekly APG101+Reirradiation versus Reirradiation in Progressive Glioblastoma, 10.1158/1078-0432.ccr-14-0951-t
  50. Teodorczyk M, Kleber S, Wollny D, Sefrin J P, Aykut B, Mateos A, Herhaus P, Sancho-Martinez I, Hill O, Gieffers C, Sykora J, Weichert W, Eisen C, Trumpp A, Sprick M R, Bergmann F, Welsch T, Martin-Villalba A, CD95 promotes metastatic spread via Sck in pancreatic ductal adenocarcinoma, 10.1038/cdd.2014.217
  51. Dudley A. C., Tumor Endothelial Cells, 10.1101/cshperspect.a006536
  52. Yu JS, Lee PK, Ehtesham M, Samoto K, Black KL, Wheeler CJ (2003) Intratumoral T cell subset ratios and Fas ligand expression on brain tumor endothelium. J Neurooncol 64(1–2):55–61
  53. Bajou Khalid, Peng Hongjun, Laug Walter E., Maillard Catherine, Noel Agnes, Foidart Jean M., Martial Joseph A., DeClerck Yves A., Plasminogen Activator Inhibitor-1 Protects Endothelial Cells from FasL-Mediated Apoptosis, 10.1016/j.ccr.2008.08.012
  54. Motz Gregory T, Santoro Stephen P, Wang Li-Ping, Garrabrant Tom, Lastra Ricardo R, Hagemann Ian S, Lal Priti, Feldman Michael D, Benencia Fabian, Coukos George, Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors, 10.1038/nm.3541
  55. Tischner D, Woess C, Ottina E, Villunger A, Bcl-2-regulated cell death signalling in the prevention of autoimmunity, 10.1038/cddis.2010.27
  56. Tischner Denise, Gaggl Irene, Peschel Ines, Kaufmann Manuel, Tuzlak Selma, Drach Mathias, Thuille Nikolaus, Villunger Andreas, Jan Wiegers G., Defective cell death signalling along the Bcl-2 regulated apoptosis pathway compromises Treg cell development and limits their functionality in mice, 10.1016/j.jaut.2011.12.008
  57. Veglia Filippo, Perego Michela, Gabrilovich Dmitry, Myeloid-derived suppressor cells coming of age, 10.1038/s41590-017-0022-x
  58. Bronte V, Apolloni E, Cabrelle A, Ronca R, Serafini P, Zamboni P, Restifo NP, Zanovello P (2000) Identification of a CD11b(+)/Gr-1(+)/CD31(+) myeloid progenitor capable of activating or suppressing CD8(+) T cells. Blood 96(12):3838–3846
  59. Kusmartsev S. A., Li Y., Chen S.-H., Gr-1+ Myeloid Cells Derived from Tumor-Bearing Mice Inhibit Primary T Cell Activation Induced Through CD3/CD28 Costimulation, 10.4049/jimmunol.165.2.779
  60. Condamine Thomas, Ramachandran Indu, Youn Je-In, Gabrilovich Dmitry I., Regulation of Tumor Metastasis by Myeloid-Derived Suppressor Cells, 10.1146/annurev-med-051013-052304
  61. Sinha P., Chornoguz O., Clements V. K., Artemenko K. A., Zubarev R. A., Ostrand-Rosenberg S., Myeloid-derived suppressor cells express the death receptor Fas and apoptose in response to T cell-expressed FasL, 10.1182/blood-2010-11-321752
  62. Weiss J. M., Subleski J. J., Back T., Chen X., Watkins S. K., Yagita H., Sayers T. J., Murphy W. J., Wiltrout R. H., Regulatory T Cells and Myeloid-Derived Suppressor Cells in the Tumor Microenvironment Undergo Fas-Dependent Cell Death during IL-2/ CD40 Therapy, 10.4049/jimmunol.1400404
  63. Peyvandi S., Buart S., Samah B., Vetizou M., Zhang Y., Durrieu L., Polrot M., Chouaib S., Benihoud K., Louache F., Karray S., Fas Ligand Deficiency Impairs Tumor Immunity by Promoting an Accumulation of Monocytic Myeloid-Derived Suppressor Cells, 10.1158/0008-5472.can-14-1848
  64. Hailemichael Yared, Dai Zhimin, Jaffarzad Nina, Ye Yang, Medina Miguel A, Huang Xue-Fei, Dorta-Estremera Stephanie M, Greeley Nathaniel R, Nitti Giovanni, Peng Weiyi, Liu Chengwen, Lou Yanyan, Wang Zhiqiang, Ma Wencai, Rabinovich Brian, Sowell Ryan T, Schluns Kimberly S, Davis Richard E, Hwu Patrick, Overwijk Willem W, Persistent antigen at vaccination sites induces tumor-specific CD8+ T cell sequestration, dysfunction and deletion, 10.1038/nm.3105
  65. Huijbers Ivo J., Krimpenfort Paul, Chomez Patrick, van der Valk Martin A., Song Ji-Ying, Inderberg-Suso Else-Marit, Schmitt-Verhulst Anne-Marie, Berns Anton, Van den Eynde Benoît J., An Inducible Mouse Model of Melanoma Expressing a Defined Tumor Antigen, 10.1158/0008-5472.can-05-3216
  66. Wehbe Maria, Soudja Saïdi M., Mas Amandine, Chasson Lionel, Guinamard Rodolphe, de Tenbossche Céline Powis, Verdeil Grégory, Van den Eynde Benoît, Schmitt-Verhulst Anne-Marie, Epithelial-Mesenchymal-Transition-Like and TGFβ Pathways Associated with Autochthonous Inflammatory Melanoma Development in Mice, 10.1371/journal.pone.0049419
  67. Soudja Saïdi M., Wehbe Maria, Mas Amandine, Chasson Lionel, de Tenbossche Céline Powis, Huijbers Ivo, Van den Eynde Benoît, Schmitt-Verhulst Anne-Marie, Tumor-Initiated Inflammation Overrides Protective Adaptive Immunity in an Induced Melanoma Model in Mice, 10.1158/0008-5472.can-09-4354
  68. Seino K, Iwabuchi K, Kayagaki N, Miyata R, Nagaoka I, Matsuzawa A, Fukao K, Yagita H, Okumura K (1998) Chemotactic activity of soluble Fas ligand against phagocytes. J Immunol 161(9):4484–4488
  69. Ottonello L, Tortolina G, Amelotti M, Dallegri F (1999) Soluble Fas ligand is chemotactic for human neutrophilic polymorphonuclear leukocytes. J Immunol 162(6):3601–3606
  70. Hohlbaum Andreas M., Moe Signa, Marshak-Rothstein Ann, Opposing Effects of Transmembrane and Soluble FAS Ligand Expression on Inflammation and Tumor Cell Survival, 10.1084/jem.191.7.1209
  71. Shudo Koyo, Kinoshita Kuninori, Imamura Ryu, Fan Hong, Hasumoto Kenyu, Tanaka Masato, Nagata Shigekazu, Suda Takashi, The membrane-bound but not the soluble form of human Fas ligand is responsible for its inflammatory activity, 10.1002/1521-4141(200108)31:8<2504::aid-immu2504>3.0.co;2-c
  72. Chen Y.-L., Chen S.-H., Wang J.-Y., Yang B.-C., Fas Ligand on Tumor Cells Mediates Inactivation of Neutrophils, 10.4049/jimmunol.171.3.1183
  73. De Larco J. E., The Potential Role of Neutrophils in Promoting the Metastatic Phenotype of Tumors Releasing Interleukin-8, 10.1158/1078-0432.ccr-03-0760
  74. Di Carlo E., The intriguing role of polymorphonuclear neutrophils in antitumor reactions, 10.1182/blood.v97.2.339
  75. Moses Katrin, Brandau Sven, Human neutrophils: Their role in cancer and relation to myeloid-derived suppressor cells, 10.1016/j.smim.2016.03.018
  76. Fridlender Z. G., Albelda S. M., Tumor-associated neutrophils: friend or foe?, 10.1093/carcin/bgs123
  77. Zhou Jie, Nefedova Yulia, Lei Aihua, Gabrilovich Dmitry, Neutrophils and PMN-MDSC: Their biological role and interaction with stromal cells, 10.1016/j.smim.2017.12.004
  78. Dockrell D H, Badley A D, Villacian J S, Heppelmann C J, Algeciras A, Ziesmer S, Yagita H, Lynch D H, Roche P C, Leibson P J, Paya C V, The expression of Fas Ligand by macrophages and its upregulation by human immunodeficiency virus infection., 10.1172/jci1171
  79. Stranges Peter B., Watson Jessica, Cooper Cristie J., Choisy-Rossi Caroline-Morgane, Stonebraker Austin C., Beighton Ryan A., Hartig Heather, Sundberg John P., Servick Stein, Kaufmann Gunnar, Fink Pamela J., Chervonsky Alexander V., Elimination of Antigen-Presenting Cells and Autoreactive T Cells by Fas Contributes to Prevention of Autoimmunity, 10.1016/j.immuni.2007.03.016
  80. Ashany D, Savir A, Bhardwaj N, Elkon KB (1999) Dendritic cells are resistant to apoptosis through the Fas (CD95/APO-1) pathway. J Immunol 163(10):5303–5311
  81. Willems F, Amraoui Z, Vanderheyde N, Verhasselt V, Aksoy E, Scaffidi C, Peter ME, Krammer PH, Goldman M (2000) Expression of c-FLIP(L) and resistance to CD95-mediated apoptosis of monocyte-derived dendritic cells: inhibition by bisindolylmaleimide. Blood 95(11):3478–3482
  82. Rescigno Maria, Piguet Vincent, Valzasina Barbara, Lens Suzanne, Zubler Rudolf, French Lars, Kindler Vincent, Tschopp Jurg, Ricciardi-Castagnoli Paola, FAS Engagement Induces the Maturation of Dendritic Cells (Dcs), the Release of Interleukin (Il)-1β, and the Production of Interferon γ in the Absence of IL-12 during Dc–T Cell Cognate Interaction : A New Role for FAS Ligand in Inflammatory Responses, 10.1084/jem.192.11.1661
  83. Lakins Matthew A., Ghorani Ehsan, Munir Hafsa, Martins Carla P., Shields Jacqueline D., Cancer-associated fibroblasts induce antigen-specific deletion of CD8+ T Cells to protect tumour cells, 10.1038/s41467-018-03347-0
  84. Strauss L., Bergmann C., Whiteside T. L., Human Circulating CD4+CD25highFoxp3+ Regulatory T Cells Kill Autologous CD8+ but Not CD4+ Responder Cells by Fas-Mediated Apoptosis, 10.4049/jimmunol.182.3.1469
  85. Fritzsching B., Oberle N., Pauly E., Geffers R., Buer J., Poschl J., Krammer P., Linderkamp O., Suri-Payer E., Naive regulatory T cells: a novel subpopulation defined by resistance toward CD95L-mediated cell death, 10.1182/blood-2006-02-005660
  86. Plaza-Sirvent Carlos, Schuster Marc, Neumann Yvonne, Heise Ulrike, Pils Marina C., Schulze-Osthoff Klaus, Schmitz Ingo, c-FLIP Expression in Foxp3-Expressing Cells Is Essential for Survival of Regulatory T Cells and Prevention of Autoimmunity, 10.1016/j.celrep.2016.12.022
  87. Hassin David, Garber Orit G., Meiraz Avihai, Schiffenbauer Yael S., Berke Gideon, Cytotoxic T lymphocyte perforin and Fas ligand working in concert even when Fas ligand lytic action is still not detectable : CTL perforin and FasL complementation, 10.1111/j.1365-2567.2011.03426.x
  88. Kameoka M, Exposure of resting peripheral blood T cells to HIV-1 particles generates CD25+ killer cells in a small subset, leading to induction of apoptosis in bystander cells, 10.1093/intimm/9.10.1453
  89. HAHN SINUHE, GEHRI ROLAND, ERB PETER, Mechanism and Biological Significance of CD4-mediated Cytotoxicity, 10.1111/j.1600-065x.1995.tb00684.x
  90. Pan G., An Antagonist Decoy Receptor and a Death Domain-Containing Receptor for TRAIL, 10.1126/science.277.5327.815
  91. LeBlanc H N, Ashkenazi A, Apo2L/TRAIL and its death and decoy receptors, 10.1038/sj.cdd.4401187
  92. Wu GS, Burns TF, Zhan Y, Alnemri ES, El-Deiry WS (1999) Molecular cloning and functional analysis of the mouse homologue of the KILLER/DR5 tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor. Cancer Res 59(12):2770–2775
  93. Oikonomou E, Kothonidis K, Zografos G, Nasioulas G, Andera L, Pintzas A, Newly established tumourigenic primary human colon cancer cell lines are sensitive to TRAIL-induced apoptosis in vitro and in vivo, 10.1038/sj.bjc.6603835
  94. Walczak H., Death Receptor-Ligand Systems in Cancer, Cell Death, and Inflammation, 10.1101/cshperspect.a008698
  95. Liguori Manuela, Buracchi Chiara, Pasqualini Fabio, Bergomas Francesca, Pesce Samantha, Sironi Marina, Grizzi Fabio, Mantovani Alberto, Belgiovine Cristina, Allavena Paola, Functional TRAIL receptors in monocytes and tumor-associated macrophages: A possible targeting pathway in the tumor microenvironment, 10.18632/oncotarget.9340
  96. Wendling U, Walczak H, Dörr J, Jaboci C, Weller M, Krammer P H, Zipp F, Expression of TRAIL receptors in human autoreactive and foreign antigen-specific T cells, 10.1038/sj.cdd.4400692
  97. Jeremias Irmela, Herr Ingrid, Boehler Thomas, Debatin Klaus-Michael, TRAIL/Apo-2-ligand-induced apoptosis in human T cells, 10.1002/(sici)1521-4141(199801)28:01<143::aid-immu143>3.0.co;2-3
  98. Lunemann J. D., Waiczies S., Ehrlich S., Wendling U., Seeger B., Kamradt T., Zipp F., Death Ligand TRAIL Induces No Apoptosis but Inhibits Activation of Human (Auto)antigen-Specific T Cells, 10.4049/jimmunol.168.10.4881
  99. Chyuan I-Tsu, Tsai Hwei-Fang, Wu Chien-Sheng, Sung Chi-Chang, Hsu Ping-Ning, TRAIL-Mediated Suppression of T Cell Receptor Signaling Inhibits T Cell Activation and Inflammation in Experimental Autoimmune Encephalomyelitis, 10.3389/fimmu.2018.00015
  100. Dominguez George A., Condamine Thomas, Mony Sridevi, Hashimoto Ayumi, Wang Fang, Liu Qin, Forero Andres, Bendell Johanna, Witt Robert, Hockstein Neil, Kumar Prasanna, Gabrilovich Dmitry I., Selective Targeting of Myeloid-Derived Suppressor Cells in Cancer Patients Using DS-8273a, an Agonistic TRAIL-R2 Antibody, 10.1158/1078-0432.ccr-16-1784
  101. Diao Zhijuan, Shi Juan, Zhu Jieqing, Yuan Haiqin, Ru Qiang, Liu Shilian, Liu Yanxin, Zheng Dexian, TRAIL suppresses tumor growth in mice by inducing tumor-infiltrating CD4+CD25+ Treg apoptosis, 10.1007/s00262-012-1370-x
  102. Vandenabeele Peter, Declercq Wim, Beyaert Rudi, Fiers Walter, Two tumour necrosis factor receptors: structure and function, 10.1016/s0962-8924(00)89088-1
  103. Aggarwal Bharat B., Signalling pathways of the TNF superfamily: a double-edged sword, 10.1038/nri1184
  104. Naudé Petrus J. W., den Boer Johan A., Luiten Paul G. M., Eisel Ulrich L. M., Tumor necrosis factor receptor cross-talk : TNF receptor cross-talk, 10.1111/j.1742-4658.2011.08017.x
  105. Popivanova Boryana K., Kitamura Kazuya, Wu Yu, Kondo Toshikazu, Kagaya Takashi, Kaneko Shiuchi, Oshima Masanobu, Fujii Chifumi, Mukaida Naofumi, Blocking TNF-α in mice reduces colorectal carcinogenesis associated with chronic colitis, 10.1172/jci32453
  106. Zhaorigetu S, Yanaka N, Sasaki M, Watanabe H, Kato N (2003) Silk protein, sericin, suppresses DMBA-TPA-induced mouse skin tumorigenesis by reducing oxidative stress, inflammatory responses and endogenous tumor promoter TNF-alpha. Oncol Rep 10(3):537–543
  107. Scott KA, Moore RJ, Arnott CH, East N, Thompson RG, Scallon BJ, Shealy DJ, Balkwill FR (2003) An anti-tumor necrosis factor-alpha antibody inhibits the development of experimental skin tumors. Mol Cancer Ther 2(5):445–451
  108. Zhao Xueqiang, Rong Lijie, Zhao Xiaopu, Li Xiao, Liu Xiaoman, Deng Jingjing, Wu Hao, Xu Xia, Erben Ulrike, Wu Peihua, Syrbe Uta, Sieper Joachim, Qin Zhihai, TNF signaling drives myeloid-derived suppressor cell accumulation, 10.1172/jci64115
  109. Chen Xin, Oppenheim Joost J., Contrasting effects of TNF and anti-TNF on the activation of effector T cells and regulatory T cells in autoimmunity, 10.1016/j.febslet.2011.04.025
  110. Kasibhatla Shailaja, Brunner Thomas, Genestier Laurent, Echeverri Fernando, Mahboubi Artin, Green Douglas R, DNA Damaging Agents Induce Expression of Fas Ligand and Subsequent Apoptosis in T Lymphocytes via the Activation of NF-κB and AP-1, 10.1016/s1097-2765(00)80054-4
  111. Pobezinskaya Y. L., Choksi S., Morgan M. J., Cao X., Liu Z.-g., The Adaptor Protein TRADD Is Essential for TNF-Like Ligand 1A/Death Receptor 3 Signaling, 10.4049/jimmunol.1002374
  112. Zeng Linlin, Li Ting, Xu Derek C., Liu Jennifer, Mao Guozhang, Cui Mei-Zhen, Fu Xueqi, Xu Xuemin, Death Receptor 6 Induces Apoptosis Not through Type I or Type II Pathways, but via a Unique Mitochondria-dependent Pathway by Interacting with Bax Protein, 10.1074/jbc.m112.362038
  113. Vanamee Éva S., Faustman Denise L., TNFR2: A Novel Target for Cancer Immunotherapy, 10.1016/j.molmed.2017.09.007
  114. Kunkele A., Johnson A. J., Rolczynski L. S., Chang C. A., Hoglund V., Kelly-Spratt K. S., Jensen M. C., Functional Tuning of CARs Reveals Signaling Threshold above Which CD8+ CTL Antitumor Potency Is Attenuated due to Cell Fas-FasL-Dependent AICD, 10.1158/2326-6066.cir-14-0200
  115. Cao K, Wang G, Li W, Zhang L, Wang R, Huang Y, Du L, Jiang J, Wu C, He X, Roberts A I, Li F, Rabson A B, Wang Y, Shi Y, Histone deacetylase inhibitors prevent activation-induced cell death and promote anti-tumor immunity, 10.1038/onc.2015.46
  116. Gastman BR, Johnson DE, Whiteside TL, Rabinowich H (2000) Tumor-induced apoptosis of T lymphocytes: elucidation of intracellular apoptotic events. Blood 95(6):2015–2023
Bibliographic reference Zhu, Jingjing ; Petit, Pierre-Florent ; Van den Eynde, Benoît. Apoptosis of tumor-infiltrating T lymphocytes: a new immune checkpoint mechanism. In: Cancer Immunology, Immunotherapy, (2018)
Permanent URL http://hdl.handle.net/2078.1/209365