Zilio, Leonardo
[UCL]
Souza Wilkens, Rodrigo
[UCL]
Fairon, Cédrick
[UCL]
Parsers are essential tools for several NLP applications. Here we introduce PassPort, a model for the dependency parsing of Portuguese trained with the Stanford Parser. For developing PassPort, we observed which approach performed best in several setups using different existing parsing algorithms and combinations of linguistic information. PassPort achieved an UAS of 87.55 and a LAS of 85.21 in the Universal Depen- dencies corpus. We also evaluated the model’s performance in relation to another model and different corpora containing three genres. For that, we annotated random sentences from these corpora using PassPort and the PALAVRAS parsing system. We then carried out a manual evalua- tion and comparison of both models. They achieved very similar results for dependency parsing, with a LAS of 85.02 for PassPort against 84.36 for PALAVRAS. In addition, the results from the analysis showed us that better performance in the part-of-speech tagging could improve our LAS.


- Afonso, S., Bick, E., Santos, D., Haber, R.: Floresta sintá (c) tica: um “treebank” para o português. quot. In: Gonçalves, A., Correia, C.N., (eds.) Actas do XVII Encontro Nacional da Associação Portuguesa de Linguística (APL 2001), Lisboa 2–4 de Outubro de 2001, Lisboa Portugal: APL (2001)
- António, B., Castro, S., Silva, J., Costa, F.: Cintil depbank handbook: design options for the representation of grammatical dependencies. Department of Informatics, University of Lisbon, Technical reports nb. di-fcul-tr-11-03, pp. 86–89 (2011)
- Bick, E.: The Parsing System “Palavras”: Automatic Grammatical Analysis of Portuguese in a Constraint Grammar Framework. Aarhus Universitetsforlag (2000)
- Buchholz Sabine, Marsi Erwin, CoNLL-X shared task on multilingual dependency parsing, 10.3115/1596276.1596305
- Chen Danqi, Manning Christopher, A Fast and Accurate Dependency Parser using Neural Networks, 10.3115/v1/d14-1082
- Gamallo Pablo, Dependency Parsing with Compression Rules, 10.18653/v1/w15-2214
- McDonald, R., Crammer, K., Pereira, F.: Online large-margin training of dependency parsers. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, pp. 91–98. Association for Computational Linguistics (2005)
- McDonald Ryan, Lerman Kevin, Pereira Fernando, Multilingual dependency analysis with a two-stage discriminative parser, 10.3115/1596276.1596317
- McDonald Ryan, Nivre Joakim, Analyzing and Integrating Dependency Parsers, 10.1162/coli_a_00039
- McDonald, R., Pereira, F.: Online learning of approximate dependency parsing algorithms. In: 11th Conference of the European Chapter of the Association for Computational Linguistics (2006)
- Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781
(2013)
- Nivre, J., Hall, J., Nilsson, J.: MaltParser: a data-driven parser-generator for dependency parsing. In: International Conference on Language Resources and Evaluation, vol. 6, pp. 2216–2219 (2006)
- Nivre Joakim, Hall Johan, Nilsson Jens, Eryiǧit Gülşen, Marinov Svetoslav, Labeled pseudo-projective dependency parsing with support vector machines, 10.3115/1596276.1596318
- Nivre, J., et al.: Universal dependencies v1: a multilingual treebank collection. In: International Conference on Language Resources and Evaluation (2016)
- Otero, P.G., González, I.: DepPattern: a multilingual dependency parser. In: International Conference on Computational Processing of the Portuguese Language (PROPOR 2012), Coimbra, Portugal, pp. 659–670. Citeseer (2012)
- Gamallo Otero Pablo, González López Isaac, A grammatical formalism based on patterns of Part of Speech tags, 10.1075/ijcl.16.1.03gam
- Rademaker, A., Chalub, F., Real, L., Freitas, C., Bick, E., de Paiva, V.: Universal dependencies for Portuguese. In: Proceedings of the Fourth International Conference on Dependency Linguistics (Depling), Pisa, Italy, pp. 197–206, September 2017.
http://aclweb.org/anthology/W17-6523
- Silva João, Branco António, Castro Sérgio, Reis Ruben, Out-of-the-Box Robust Parsing of Portuguese, Lecture Notes in Computer Science (2010) ISBN:9783642123191 p.75-85, 10.1007/978-3-642-12320-7_10
- Tiedemann, J.: Finding alternative translations in a large corpus of movie subtitle. In: International Conference on Language Resources and Evaluation (2016)
- Filho Jorge A. Wagner, Wilkens Rodrigo, Zilio Leonardo, Idiart Marco, Villavicencio Aline, Crawling by Readability Level, Lecture Notes in Computer Science (2016) ISBN:9783319415512 p.306-318, 10.1007/978-3-319-41552-9_31
- Wagner Filho, J., Wilkens, R., Idiart, M., Villavicencio, A.: The brWaC corpus: a new open resource to aid in the processing of Brazilian Portuguese. In: 11th edition of the Language Resources and Evaluation Conference (LREC) (2018)
- Wagner Filho, J.A., Wilkens, R., Villavicencio, A.: Automatic construction of large readability corpora. In: Workshop on Computational Linguistics for Linguistic Complexity (CL4LC), p. 164 (2016)
- Zeman Daniel, Popel Martin, Straka Milan, Hajic Jan, Nivre Joakim, Ginter Filip, Luotolahti Juhani, Pyysalo Sampo, Petrov Slav, Potthast Martin, Tyers Francis, Badmaeva Elena, Gokirmak Memduh, Nedoluzhko Anna, Cinkova Silvie, Hajic jr. Jan, Hlavacova Jaroslava, Kettnerová Václava, Uresova Zdenka, Kanerva Jenna, Ojala Stina, Missilä Anna, Manning Christopher D., Schuster Sebastian, Reddy Siva, Taji Dima, Habash Nizar, Leung Herman, de Marneffe Marie-Catherine, Sanguinetti Manuela, Simi Maria, Kanayama Hiroshi, dePaiva Valeria, Droganova Kira, Martínez Alonso Héctor, Çöltekin Çağrı, Sulubacak Umut, Uszkoreit Hans, Macketanz Vivien, Burchardt Aljoscha, Harris Kim, Marheinecke Katrin, Rehm Georg, Kayadelen Tolga, Attia Mohammed, Elkahky Ali, Yu Zhuoran, Pitler Emily, Lertpradit Saran, Mandl Michael, Kirchner Jesse, Alcalde Hector Fernandez, Strnadová Jana, Banerjee Esha, Manurung Ruli, Stella Antonio, Shimada Atsuko, Kwak Sookyoung, Mendonca Gustavo, Lando Tatiana, Nitisaroj Rattima, Li Josie,
CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies
, 10.18653/v1/k17-3001
- Zhou, H., Zhang, Y., Huang, S., Chen, J.: A neural probabilistic structured-prediction model for transition-based dependency parsing. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, vol. 1: Long Papers, pp. 1213–1222 (2015)
Bibliographic reference |
Zilio, Leonardo ; Souza Wilkens, Rodrigo ; Fairon, Cédrick. PassPort: A Dependency Parsing Model for Portuguese. In: Villavicencio, A., Viviane, M., Abad, A., Caseli, H., Gamallo, P., Ramisch, C., Gonçalo Oliveira, H.R., Paetzold, G.H., Computational Processing of the Portuguese Language, 2018, p. 479-489 |
Permanent URL |
http://hdl.handle.net/2078.1/208090 |