Bovet, Alexandre
[UCL]
Morone, Flaviano
Makse, Hernán A.
Measuring and forecasting opinion trends from real-time social media is a long-standing goal of big-data analytics. Despite its importance, there has been no conclusive scientific evidence so far that social media activity can capture the opinion of the general population. Here we develop a method to infer the opinion of Twitter users regarding the candidates of the 2016 US Presidential Election by using a combination of statistical physics of complex networks and machine learning based on hashtags co-occurrence to develop an in-domain training set approaching 1 million tweets. We investigate the social networks formed by the interactions among millions of Twitter users and infer the support of each user to the presidential candidates. The resulting Twitter trends follow the New York Times National Polling Average, which represents an aggregate of hundreds of independent traditional polls, with remarkable accuracy. Moreover, the Twitter opinion trend precedes the aggregated NYT polls by 10 days, showing that Twitter can be an early signal of global opinion trends. Our analytics unleash the power of Twitter to uncover social trends from elections, brands to political movements, and at a fraction of the cost of national polls.
- Mislove, A., Lehmann, S., Ahn, Y.-Y., Onnela, J.-P. & Rosenquist, J. N. Pulse of the nation: US mood throughout the day inferred from Twitter http://www.ccs.neu.edu/home/amislove/twittermood/ (2010).
- Hannak, A. et al. Tweetin’ in the rain: exploring societal-scale effects of weather on mood. In Proc. 6th Int. AAAI Conf. Weblogs Soc. Media, 479–482 (Dublin, Ireland, 2012).
- Pak, A. & Paroubek, P. Twitter as a corpus for sentiment analysis and opinion mining. In Proc. Seventh Int. Conf. Lang. Resour. Eval., pp. 19–21 (European Language Resources Association (ELRA), Valletta, Malta, 2010).
- Quattrociocchi Walter, Caldarelli Guido, Scala Antonio, Opinion dynamics on interacting networks: media competition and social influence, 10.1038/srep04938
- Liu Yang, Huang Xiangji, An Aijun, Yu Xiaohui, ARSA : a sentiment-aware model for predicting sales performance using blogs, 10.1145/1277741.1277845
- Bollen Johan, Mao Huina, Zeng Xiaojun, Twitter mood predicts the stock market, 10.1016/j.jocs.2010.12.007
- Zheludev Ilya, Smith Robert, Aste Tomaso, When Can Social Media Lead Financial Markets?, 10.1038/srep04213
- Ranco Gabriele, Aleksovski Darko, Caldarelli Guido, Grčar Miha, Mozetič Igor, The Effects of Twitter Sentiment on Stock Price Returns, 10.1371/journal.pone.0138441
- CURME CHESTER, STANLEY H. EUGENE, VODENSKA IRENA, COUPLED NETWORK APPROACH TO PREDICTABILITY OF FINANCIAL MARKET RETURNS AND NEWS SENTIMENTS, 10.1142/s0219024915500430
- O’Connor, B., Balasubramanyan, R., Routledge, B. R. & Smith, N. a. From tweets to polls: Linking text sentiment to public opinion time series. 122–129, DOI:citeulike-article-id:7044833 (2010).
- Tumasjan Andranik, Sprenger Timm O., Sandner Philipp G., Welpe Isabell M., Election Forecasts With Twitter : How 140 Characters Reflect the Political Landscape, 10.1177/0894439310386557
- Shi, L., Agarwal, N., Agrawal, A., Garg, R. & Spoelstra, J. Predicting US primary elections with Twitter. In Proc. Work. Soc. Netw. Soc. Media Anal., 1–8 (Lake Tahoe, Nevada, 2012).
- Marchetti-Bowick, M. & Chambers, N. Learning for microblogs with distant supervision: political forecasting with Twitter. In Proc. 13th Conf. Eur. Chapter Assosciation Comput. Linguist. 603–612 (2012).
- Borondo J., Morales A. J., Losada J. C., Benito R. M., Characterizing and modeling an electoral campaign in the context of Twitter: 2011 Spanish Presidential election as a case study, 10.1063/1.4729139
- Park, S., Ko, M., Lee, J. & Song, J. Agenda diversity in social media discourse: a study of the 2012 korean general election. In Proc. 7th Int. Conf. Web Soc. Media 486–495 (2012).
- Contractor Danish, Faruquie Tanveer Afzal, Understanding election candidate approval ratings using social media data, 10.1145/2487788.2487883
- Thapen, N. A. & Ghanem, M. M. Towards passive political opinion polling using twitter. In CEUR Workshop Proc., vol. 1110, 19–34 (2013).
- Hoang Tuan-Anh, Cohen William W., Lim Ee-Peng, Pierce Doug, Redlawsk David P., Politics, sharing and emotion in microblogs, 10.1145/2492517.2492554
- Fink Clay, Bos Nathan, Perrone Alexander, Liu Edwina, Kopecky Jonathon, Twitter, Public Opinion, and the 2011 Nigerian Presidential Election, 10.1109/socialcom.2013.50
- Gayo-Avello Daniel, A Meta-Analysis of State-of-the-Art Electoral Prediction From Twitter Data, 10.1177/0894439313493979
- Caldarelli Guido, Chessa Alessandro, Pammolli Fabio, Pompa Gabriele, Puliga Michelangelo, Riccaboni Massimo, Riotta Gianni, A Multi-Level Geographical Study of Italian Political Elections from Twitter Data, 10.1371/journal.pone.0095809
- Borge-Holthoefer Javier, Magdy Walid, Darwish Kareem, Weber Ingmar, Content and Network Dynamics Behind Egyptian Political Polarization on Twitter, 10.1145/2675133.2675163
- Tsakalidis Adam, Papadopoulos Symeon, Cristea Alexandra I., Kompatsiaris Yiannis, Predicting Elections for Multiple Countries Using Twitter and Polls, 10.1109/mis.2015.17
- Kagan Vadim, Stevens Andrew, Subrahmanian V.S., Using Twitter Sentiment to Forecast the 2013 Pakistani Election and the 2014 Indian Election, 10.1109/mis.2015.16
- Saifuddin, A., Kokil, J. & Marko, M. S. Tweets & votes - a 4 country comparison of volumetric and sentiment analysis approcahes. In Proc. 10th Int. Conf. Web Soc. Media, 507–510 (2016).
- Wang, Y., Li, Y. & Luo, J. Deciphering the 2016 U.S. presidential campaign in the Twitter sphere: a comparison of the trumpists and clintonists. In Proc. 10th Int. Conf. Web Soc. Media, 4 (2016).
- Llewellyn, C. & Cram, L. Brexit? analyzing opinion on the uk-eu referendum within Twitter. In Proc. 10th Int. Conf. Web Soc. Media, 760–761 (2016).
- Jungherr Andreas, Jürgens Pascal, Schoen Harald, Why the Pirate Party Won the German Election of 2009 or The Trouble With Predictions: A Response to Tumasjan, A., Sprenger, T. O., Sander, P. G., & Welpe, I. M. “Predicting Elections With Twitter: What 140 Characters Reveal About Political Sentiment”, 10.1177/0894439311404119
- Jungherr, A., Schoen, H., Posegga, O. & Jurgens, P. Digital trace data in the study of public opinion: an indicator of attention toward politics rather than political support. Soc. Sci. Comput. Rev. 0894439316631043 (2016).
- Subrahmanian V.S., Reforgiato Diego, AVA: Adjective-Verb-Adverb Combinations for Sentiment Analysis, 10.1109/mis.2008.57
- Montejo-Ráez Arturo, Martínez-Cámara Eugenio, Martín-Valdivia M. Teresa, Ureña-López L. Alfonso, Ranked WordNet graph for Sentiment Polarity Classification in Twitter, 10.1016/j.csl.2013.04.001
- Tausczik Yla R., Pennebaker James W., The Psychological Meaning of Words: LIWC and Computerized Text Analysis Methods, 10.1177/0261927x09351676
- González-Bailón Sandra, Paltoglou Georgios, Signals of Public Opinion in Online Communication : A Comparison of Methods and Data Sources, 10.1177/0002716215569192
- Ceron Andrea, Curini Luigi, Iacus Stefano M., Using Sentiment Analysis to Monitor Electoral Campaigns : Method Matters—Evidence From the United States and Italy, 10.1177/0894439314521983
- Beauchamp Nicholas, Predicting and Interpolating State-Level Polls Using Twitter Textual Data : PREDICTING POLLS WITH TWITTER, 10.1111/ajps.12274
- Sylwester Karolina, Purver Matthew, Twitter Language Use Reflects Psychological Differences between Democrats and Republicans, 10.1371/journal.pone.0137422
- Ceron Andrea, Curini Luigi, Iacus Stefano Maria, iSA: A fast, scalable and accurate algorithm for sentiment analysis of social media content, 10.1016/j.ins.2016.05.052
- Ceron, A., Curini, L. & Iacus, S. Politics and Big Data: Nowcasting and Forecasting Elections with Social Media (Taylor & Francis, 2017).
- Hopkins Daniel J., King Gary, A Method of Automated Nonparametric Content Analysis for Social Science, 10.1111/j.1540-5907.2009.00428.x
- New York Times. New York Times National Polling Average http://www.nytimes.com/interactive/2016/us/elections/polls.html [Online; accessed 24-April-2017] (2016).
- Ceron, A., Curini, L. & Iacus, S. Politics and Big Data: Nowcasting and Forecasting Elections with Social Media, chap. 3 (Taylor & Francis, 2017).
- Pei Sen, Muchnik Lev, Andrade, José S., Zheng Zhiming, Makse Hernán A., Searching for superspreaders of information in real-world social media, 10.1038/srep05547
- Bunde, A. & Havlin, S. Fractals and Disordered Systems (Springer Berlin Heidelberg, 2012).
- Bollobás, B. Random Graphs. Cambridge Studies in Advanced Mathematics (Cambridge University Press, 2001).
- Raghavan Usha Nandini, Albert Réka, Kumara Soundar, Near linear time algorithm to detect community structures in large-scale networks, 10.1103/physreve.76.036106
- Blondel Vincent D, Guillaume Jean-Loup, Lambiotte Renaud, Lefebvre Etienne, Fast unfolding of communities in large networks, 10.1088/1742-5468/2008/10/p10008
- Newman M. E. J., Girvan M., Finding and evaluating community structure in networks, 10.1103/physreve.69.026113
- Barberá Pablo, Jost John T., Nagler Jonathan, Tucker Joshua A., Bonneau Richard, Tweeting From Left to Right : Is Online Political Communication More Than an Echo Chamber?, 10.1177/0956797615594620
- Mills, T. Time Series Techniques for Economists (Cambridge University Press, 1991).
- Seabold, S. & Perktold, J. Statsmodels: Econometric and statistical modeling with python. In 9th Python in Science Conference (2010).
- Amador Diaz Lopez Julio Cesar, Collignon-Delmar Sofia, Benoit Kenneth, Matsuo Akitaka, Predicting the Brexit Vote by Tracking and Classifying Public Opinion Using Twitter Data, 10.1515/spp-2017-0006
- Bohannon John, The pulse of the people, 10.1126/science.355.6324.470
- Jasny Barbara R., Stone Richard, Prediction and its limits, 10.1126/science.355.6324.468
- Wang Xiaolong, Wei Furu, Liu Xiaohua, Zhou Ming, Zhang Ming, Topic sentiment analysis in twitter : a graph-based hashtag sentiment classification approach, 10.1145/2063576.2063726
- Pew Research Center. Assessing the representativeness of public opinion surveys http://www.people-press.org/2012/05/15/assessing-the-representativeness-of-public-opinion-surveys. [Online; accessed 5-October-2016] (2013).
- Conover Michael D, Gonçalves Bruno, Flammini Alessandro, Menczer Filippo, Partisan asymmetries in online political activity, 10.1140/epjds6
- Pew Research Center. Social media update 2016 http://www.pewinternet.org/2016/11/11/social-media-update-2016/. [Online; accessed 7-March-2017] (2016).
- Joseph Kenneth, Landwehr Peter M., Carley Kathleen M., Two 1%s Don’t Make a Whole: Comparing Simultaneous Samples from Twitter’s Streaming API, Social Computing, Behavioral-Cultural Modeling and Prediction (2014) ISBN:9783319055787 p.75-83, 10.1007/978-3-319-05579-4_10
- Twitter Documentation. Twitter API authentication https://developer.twitter.com/en/docs/basics/authentication/guides/access-tokens [Online; accessed 26-February-2018] (2018).
- Twitter Documentation. Tweet object https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/tweet-object [Online; accessed 26-February-2018] (2018).
- Varol, O., Ferrara, E., Davis, C. A., Menczer, F. & Flammini, A. Online human-bot interactions: detection, estimation, and characterization. In Proc. 11th Int. AAAI Conf. Weblogs Soc. Media 280–289 (2017).
- Martinez-Romo Juan, Araujo Lourdes, Borge-Holthoefer Javier, Arenas Alex, Capitán José A., Cuesta José A., Disentangling categorical relationships through a graph of co-occurrences, 10.1103/physreve.84.046108
- Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning, vol. 1 of Springer Series in Statistics (Springer New York, New York, NY, 2009).
- Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
Bibliographic reference |
Bovet, Alexandre ; Morone, Flaviano ; Makse, Hernán A.. Validation of Twitter opinion trends with national polling aggregates: Hillary Clinton vs Donald Trump. In: Scientific Reports, Vol. 8, no.1 (2018) |
Permanent URL |
http://hdl.handle.net/2078.1/203778 |