User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

Mindboggling morphometry of human brains

  1. Paulus Martin P., Tapert Susan F., Schuckit Marc A., Neural Activation Patterns of Methamphetamine-Dependent Subjects During Decision Making Predict Relapse, 10.1001/archpsyc.62.7.761
  2. Koutsouleris Nikolaos, Meisenzahl Eva M., Davatzikos Christos, Bottlender Ronald, Frodl Thomas, Scheuerecker Johanna, Schmitt Gisela, Zetzsche Thomas, Decker Petra, Reiser Maximilian, Möller Hans-Jürgen, Gaser Christian, Use of Neuroanatomical Pattern Classification to Identify Subjects in At-Risk Mental States of Psychosis and Predict Disease Transition, 10.1001/archgenpsychiatry.2009.62
  3. Whalley Heather C., Simonotto Enrico, Moorhead William, McIntosh Andrew, Marshall Ian, Ebmeier Klaus P., Owens David G.C., Goddard Nigel H., Johnstone Eve C., Lawrie Stephen M., Functional Imaging as a Predictor of Schizophrenia, 10.1016/j.biopsych.2005.11.013
  4. Canli Turhan, Cooney Rebecca E., Goldin Philippe, Shah Maulik, Sivers Heidi, Thomason Moriah E., Whitfield-Gabrieli Susan, Gabrieli John D.E., Gotlib Ian H., Amygdala reactivity to emotional faces predicts improvement in major depression : , 10.1097/01.wnr.0000174407.09515.cc
  5. Chen Chi-Hua, Ridler Khanum, Suckling John, Williams Steve, Fu Cynthia H.Y., Merlo-Pich Emilio, Bullmore Ed, Brain Imaging Correlates of Depressive Symptom Severity and Predictors of Symptom Improvement After Antidepressant Treatment, 10.1016/j.biopsych.2006.09.018
  6. Fu Cynthia H.Y., Williams Steve C.R., Brammer Michael J., Suckling John, Kim Jieun, Cleare Anthony J., Walsh Nicholas D., Mitterschiffthaler Martina T., Andrew Chris M., Pich Emilio Merlo, Bullmore Edward T., Neural Responses to Happy Facial Expressions in Major Depression Following Antidepressant Treatment, 10.1176/ajp.2007.164.4.599
  7. Nitschke Jack B., Sarinopoulos Issidoros, Oathes Desmond J., Johnstone Tom, Whalen Paul J., Davidson Richard J., Kalin Ned H., Anticipatory Activation in the Amygdala and Anterior Cingulate in Generalized Anxiety Disorder and Prediction of Treatment Response, 10.1176/appi.ajp.2008.07101682
  8. Kumari Veena, Peters Emmanuelle R., Fannon Dominic, Antonova Elena, Premkumar Preethi, Anilkumar Anantha P., Williams Steven C.R., Kuipers Elizabeth, Dorsolateral Prefrontal Cortex Activity Predicts Responsiveness to Cognitive–Behavioral Therapy in Schizophrenia, 10.1016/j.biopsych.2009.04.036
  9. Doehrmann Oliver, Ghosh Satrajit S., Polli Frida E., Reynolds Gretchen O., Horn Franziska, Keshavan Anisha, Triantafyllou Christina, Saygin Zeynep M., Whitfield-Gabrieli Susan, Hofmann Stefan G., Pollack Mark, Gabrieli John D., Predicting Treatment Response in Social Anxiety Disorder From Functional Magnetic Resonance Imaging, 10.1001/2013.jamapsychiatry.5
  10. S Whitfield-Gabrieli, Mol Psychiatry [Internet] (2015)
  11. Gabrieli John D.E., Ghosh Satrajit S., Whitfield-Gabrieli Susan, Prediction as a Humanitarian and Pragmatic Contribution from Human Cognitive Neuroscience, 10.1016/j.neuron.2014.10.047
  12. Insel Thomas R., Cuthbert Bruce N., Endophenotypes: Bridging Genomic Complexity and Disorder Heterogeneity, 10.1016/j.biopsych.2009.10.008
  13. Crum William R., Camara Oscar, Rueckert Daniel, Bhatia Kanwal K., Jenkinson Mark, Hill Derek L. G., Generalised Overlap Measures for Assessment of Pairwise and Groupwise Image Registration and Segmentation, Lecture Notes in Computer Science (2005) ISBN:9783540293279 p.99-106, 10.1007/11566465_13
  14. Devlin Joseph T., Poldrack Russell A., In praise of tedious anatomy, 10.1016/j.neuroimage.2006.09.055
  15. Bohland Jason W., Bokil Hemant, Allen Cara B., Mitra Partha P., The Brain Atlas Concordance Problem: Quantitative Comparison of Anatomical Parcellations, 10.1371/journal.pone.0007200
  16. Klein Arno, Andersson Jesper, Ardekani Babak A., Ashburner John, Avants Brian, Chiang Ming-Chang, Christensen Gary E., Collins D. Louis, Gee James, Hellier Pierre, Song Joo Hyun, Jenkinson Mark, Lepage Claude, Rueckert Daniel, Thompson Paul, Vercauteren Tom, Woods Roger P., Mann J. John, Parsey Ramin V., Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration, 10.1016/j.neuroimage.2008.12.037
  17. Avants B, Klein A, Tustison N, Wu J, Gee JC. Evaluation of open-access, automated brain extraction methods on multi-site multi-disorder data. In: 16th annual meeting for the Organization of Human Brain Mapping. 2010.
  18. Klein Arno, Ghosh Satrajit S., Avants Brian, Yeo B.T.T., Fischl Bruce, Ardekani Babak, Gee James C., Mann J.J., Parsey Ramin V., Evaluation of volume-based and surface-based brain image registration methods, 10.1016/j.neuroimage.2010.01.091
  19. Klein Arno, Hirsch Joy, Mindboggle: a scatterbrained approach to automate brain labeling, 10.1016/j.neuroimage.2004.09.016
  20. Rogelj P, Kovacic S, Gee JC. Validation of a nonrigid registration algorithm for multimodal data. In: Sonka M, Fitzpatrick JM, editors. Medical Imaging 2002 [Internet]. International Society for Optics and Photonics; 2002 [cited 2016 Aug 6]. p. 299–307. http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.467170
  21. Rademacher J., Caviness V. S., Steinmetz H., Galaburda A. M., Topographical Variation of the Human Primary Cortices: Implications for Neuroimaging, Brain Mapping, and Neurobiology, 10.1093/cercor/3.4.313
  22. A Klein, Front Neurosci [Internet], 6, 171 (2012)
  23. Klein A, Dal Canton T, Ghosh SS, Landman B, Worth A. Open labels: online feedback for a public resource of manually labeled brain images. In: 16th annual meeting for the Organization of Human Brain Mapping [Internet]. 2010. https://mfr.osf.io/render?url=https://osf.io/tmjbn/?action=download%26mode=render
  24. MF Glasser, Nature [Internet] (2016)
  25. RÉGIS Jean, MANGIN Jean-François, OCHIAI Taku, FROUIN Vincent, RIVIÉRE Denis, CACHIA Arnaud, TAMURA Manabu, SAMSON Yves, “Sulcal Root” Generic Model: a Hypothesis to Overcome the Variability of the Human Cortex Folding Patterns, 10.2176/nmc.45.1
  26. Lohmann G., von Cramon D. Y., Colchester A. C. F., Deep Sulcal Landmarks Provide an Organizing Framework for Human Cortical Folding, 10.1093/cercor/bhm174
  27. Meng Yu, Li Gang, Lin Weili, Gilmore John H., Shen Dinggang, Spatial distribution and longitudinal development of deep cortical sulcal landmarks in infants, 10.1016/j.neuroimage.2014.06.004
  28. Perrot Matthieu, Rivière Denis, Mangin Jean-François, Cortical sulci recognition and spatial normalization, 10.1016/j.media.2011.02.008
  29. Dryden IL, Mardia KV. Statistical shape analysis. 1998; https://pdfs.semanticscholar.org/6ba2/73a7cfa282f73423110d00a5d20ad36766e1.pdf
  30. Bansal Ravi, Staib Lawrence H., Laine Andrew F., Hao Xuejun, Xu Dongrong, Liu Jun, Weissman Myrna, Peterson Bradley S., Anatomical Brain Images Alone Can Accurately Diagnose Chronic Neuropsychiatric Illnesses, 10.1371/journal.pone.0050698
  31. Lerch Jason P., Pruessner Jens, Zijdenbos Alex P., Collins D. Louis, Teipel Stefan J., Hampel Harald, Evans Alan C., Automated cortical thickness measurements from MRI can accurately separate Alzheimer's patients from normal elderly controls, 10.1016/j.neurobiolaging.2006.09.013
  32. Im Kiho, Lee Jong-Min, Won Seo Sang, Hyung Kim Sun, Kim Sun I., Na Duk L., Sulcal morphology changes and their relationship with cortical thickness and gyral white matter volume in mild cognitive impairment and Alzheimer's disease, 10.1016/j.neuroimage.2008.07.016
  33. V Julkunen, J Alzheimers Dis [Internet], 21, 1141 (2010)
  34. Steenwijk Martijn D., Geurts Jeroen J. G., Daams Marita, Tijms Betty M., Wink Alle Meije, Balk Lisanne J., Tewarie Prejaas K., Uitdehaag Bernard M. J., Barkhof Frederik, Vrenken Hugo, Pouwels Petra J. W., Cortical atrophy patterns in multiple sclerosis are non-random and clinically relevant, 10.1093/brain/awv337
  35. Kuperberg Gina R., Broome Matthew R., McGuire Philip K., David Anthony S., Eddy Marianna, Ozawa Fujiro, Goff Donald, West W. Caroline, Williams Steven C. R., van der Kouwe Andre J. W., Salat David H., Dale Anders M., Fischl Bruce, Regionally Localized Thinning of the Cerebral Cortex in Schizophrenia, 10.1001/archpsyc.60.9.878
  36. Jiao Yun, Chen Rong, Ke Xiaoyan, Chu Kangkang, Lu Zuhong, Herskovits Edward H., Predictive models of autism spectrum disorder based on brain regional cortical thickness, 10.1016/j.neuroimage.2009.12.047
  37. Durazzo Timothy C., Tosun Duygu, Buckley Shannon, Gazdzinski Stefan, Mon Anderson, Fryer Susanna L., Meyerhoff Dieter J., Cortical Thickness, Surface Area, and Volume of the Brain Reward System in Alcohol Dependence: Relationships to Relapse and Extended Abstinence : BRAIN REWARD SYSTEM IN RELAPSE AND ABSTINENCE, 10.1111/j.1530-0277.2011.01452.x
  38. Bakkour A., Morris J. C., Dickerson B. C., The cortical signature of prodromal AD: Regional thinning predicts mild AD dementia, 10.1212/01.wnl.0000340981.97664.2f
  39. Querbes Olivier, Aubry Florent, Pariente Jérémie, Lotterie Jean-Albert, Démonet Jean-François, Duret Véronique, Puel Michèle, Berry Isabelle, Fort Jean-Claude, Celsis Pierre, , Early diagnosis of Alzheimer's disease using cortical thickness: impact of cognitive reserve, 10.1093/brain/awp105
  40. Eskildsen Simon F., Coupé Pierrick, García-Lorenzo Daniel, Fonov Vladimir, Pruessner Jens C., Collins D. Louis, Prediction of Alzheimer's disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning, 10.1016/j.neuroimage.2012.09.058
  41. Wee Chong-Yaw, Yap Pew-Thian, Shen Dinggang, , Prediction of Alzheimer's disease and mild cognitive impairment using cortical morphological patterns : Prediction of AD and MCI using Cortical Morphological Patterns, 10.1002/hbm.22156
  42. R Wei, Front Aging Neurosci [Internet], 8, 76 (2016)
  43. Dickerson B. C., Wolk D. A., , MRI cortical thickness biomarker predicts AD-like CSF and cognitive decline in normal adults, 10.1212/wnl.0b013e31823efc6c
  44. V Latha, J Alzheimers Dis [Internet], 755 (2013)
  45. Foland-Ross Lara C., Sacchet Matthew D., Prasad Gautam, Gilbert Brooke, Thompson Paul M., Gotlib Ian H., Cortical thickness predicts the first onset of major depression in adolescence, 10.1016/j.ijdevneu.2015.07.007
  46. Shaw Philip, Lerch Jason, Greenstein Deanna, Sharp Wendy, Clasen Liv, Evans Alan, Giedd Jay, Castellanos F. Xavier, Rapoport Judith, Longitudinal Mapping of Cortical Thickness and Clinical Outcome in Children and Adolescents With Attention-Deficit/Hyperactivity Disorder, 10.1001/archpsyc.63.5.540
  47. Ecker C., Marquand A., Mourao-Miranda J., Johnston P., Daly E. M., Brammer M. J., Maltezos S., Murphy C. M., Robertson D., Williams S. C., Murphy D. G. M., Describing the Brain in Autism in Five Dimensions--Magnetic Resonance Imaging-Assisted Diagnosis of Autism Spectrum Disorder Using a Multiparameter Classification Approach, 10.1523/jneurosci.5413-09.2010
  48. Cointepas Yann, Mangin Jean-François, Garnero Line, Poline Jean-Baptiste, Benali Habib, BrainVISA: Software platform for visualization and analysis of multi-modality brain data, 10.1016/s1053-8119(01)91441-7
  49. Kochunov Peter, Rogers William, Mangin Jean-Francois, Lancaster Jack, A Library of Cortical Morphology Analysis Tools to Study Development, Aging and Genetics of Cerebral Cortex, 10.1007/s12021-011-9127-9
  50. Liu Tao, Sachdev Perminder S., Lipnicki Darren M., Jiang Jiyang, Cui Yue, Kochan Nicole A., Reppermund Simone, Trollor Julian N., Brodaty Henry, Wen Wei, Longitudinal changes in sulcal morphology associated with late-life aging and MCI, 10.1016/j.neuroimage.2013.02.047
  51. Cachia Arnaud, Paillère-Martinot Marie-Laure, Galinowski André, Januel Dominique, de Beaurepaire Renaud, Bellivier Frank, Artiges Eric, Andoh Jamila, Bartrés-Faz David, Duchesnay Edouard, Rivière Denis, Plaze Marion, Mangin Jean-Francois, Martinot Jean-Luc, Cortical folding abnormalities in schizophrenia patients with resistant auditory hallucinations, 10.1016/j.neuroimage.2007.08.049
  52. Penttilä Jani, Cachia Arnaud, Martinot Jean-Luc, Ringuenet Damien, Wessa Michèle, Houenou Josselin, Galinowski André, Bellivier Frank, Gallarda Thierry, Duchesnay Edouard, Artiges Eric, Leboyer Marion, Olié Jean-Pierre, Mangin Jean-François, Paillère-Martinot Marie-Laure, Cortical folding difference between patients with early-onset and patients with intermediate-onset bipolar disorder, 10.1111/j.1399-5618.2009.00683.x
  53. J-F Mangin, Curr Opin Neurol [Internet], 23, 359 (2010)
  54. Kempton Matthew J., Structural Neuroimaging Studies in Major Depressive Disorder : Meta-analysis and Comparison With Bipolar Disorder, 10.1001/archgenpsychiatry.2011.60
  55. Mikhno Arthur, Nuevo Pablo Martinez, Devanand Davangere P., Parsey Ramin V., Laine Andrew F., Multimodal classification of Dementia using functional data, anatomical features and 3D invariant shape descriptors, 10.1109/isbi.2012.6235621
  56. KJ Gorgolewski, bioRxiv, 079145 (2016)
  57. K Gorgolewski, Front Neuroinform [Internet], 5, 13 (2011)
  58. A Klein (2004)
  59. Klein Arno, Mensh Brett, Ghosh Satrajit, Tourville Jason, Hirsch Joy, Mindboggle: Automated brain labeling with multiple atlases, 10.1186/1471-2342-5-7
  60. Caviness Verne S., Meyer James, Makris Nikos, Kennedy David N., MRI-Based Topographic Parcellation of Human Neocortex: An Anatomically Specified Method with Estimate of Reliability, 10.1162/jocn.1996.8.6.566
  61. Arno Klein, Harvard Dataverse (2016)
  62. Arno Klein, Harvard Dataverse (2016)
  63. Arno Klein, Harvard Dataverse (2016)
  64. H Wang, Front Neuroinform [Internet], 7, 27 (2013)
  65. Dale Anders M., Fischl Bruce, Sereno Martin I., Cortical Surface-Based Analysis, 10.1006/nimg.1998.0395
  66. B Fischl, Neuroimage [Internet], 9, 195 (1999)
  67. Fischl Bruce, Sereno Martin I., Tootell Roger B.H., Dale Anders M., High-resolution intersubject averaging and a coordinate system for the cortical surface, 10.1002/(sici)1097-0193(1999)8:4<272::aid-hbm10>3.0.co;2-4
  68. A Klein, Neuroinformatics [Internet] (2012)
  69. K Arno, Front Neuroinform [Internet], 8 (2014)
  70. A Keshavan, Interactive online brain shape visualization [Internet] (2016)
  71. Jack Clifford R., Bernstein Matt A., Fox Nick C., Thompson Paul, Alexander Gene, Harvey Danielle, Borowski Bret, Britson Paula J., L. Whitwell Jennifer, Ward Chadwick, Dale Anders M., Felmlee Joel P., Gunter Jeffrey L., Hill Derek L.G., Killiany Ron, Schuff Norbert, Fox-Bosetti Sabrina, Lin Chen, Studholme Colin, DeCarli Charles S., Gunnar Krueger, Ward Heidi A., Metzger Gregory J., Scott Katherine T., Mallozzi Richard, Blezek Daniel, Levy Joshua, Debbins Josef P., Fleisher Adam S., Albert Marilyn, Green Robert, Bartzokis George, Glover Gary, Mugler John, Weiner Michael W., , The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods, 10.1002/jmri.21049
  72. Simmons Andrew, Westman Eric, Muehlboeck Sebastian, Mecocci Patrizia, Vellas Bruno, Tsolaki Magda, Kłoszewska Iwona, Wahlund Lars-Olof, Soininen Hilkka, Lovestone Simon, Evans Alan, Spenger Christian, , MRI Measures of Alzheimer's Disease and the AddNeuroMed Study, 10.1111/j.1749-6632.2009.05063.x
  73. Allen Genevera I., Amoroso Nicola, Anghel Catalina, Balagurusamy Venkat, Bare Christopher J., Beaton Derek, Bellotti Roberto, Bennett David A., Boehme Kevin L., Boutros Paul C., Caberlotto Laura, Caloian Cristian, Campbell Frederick, Chaibub Neto Elias, Chang Yu-Chuan, Chen Beibei, Chen Chien-Yu, Chien Ting-Ying, Clark Tim, Das Sudeshna, Davatzikos Christos, Deng Jieyao, Dillenberger Donna, Dobson Richard J.B., Dong Qilin, Doshi Jimit, Duma Denise, Errico Rosangela, Erus Guray, Everett Evan, Fardo David W., Friend Stephen H., Fröhlich Holger, Gan Jessica, St George-Hyslop Peter, Ghosh Satrajit S., Glaab Enrico, Green Robert C., Guan Yuanfang, Hong Ming-Yi, Huang Chao, Hwang Jinseub, Ibrahim Joseph, Inglese Paolo, Iyappan Anandhi, Jiang Qijia, Katsumata Yuriko, Kauwe John S.K., Klein Arno, Kong Dehan, Krause Roland, Lalonde Emilie, Lauria Mario, Lee Eunjee, Lin Xihui, Liu Zhandong, Livingstone Julie, Logsdon Benjamin A., Lovestone Simon, Ma Tsung-wei, Malhotra Ashutosh, Mangravite Lara M., Maxwell Taylor J., Merrill Emily, Nagorski John, Namasivayam Aishwarya, Narayan Manjari, Naz Mufassra, Newhouse Stephen J., Norman Thea C., Nurtdinov Ramil N., Oyang Yen-Jen, Pawitan Yudi, Peng Shengwen, Peters Mette A., Piccolo Stephen R., Praveen Paurush, Priami Corrado, Sabelnykova Veronica Y., Senger Philipp, Shen Xia, Simmons Andrew, Sotiras Aristeidis, Stolovitzky Gustavo, Tangaro Sabina, Tateo Andrea, Tung Yi-An, Tustison Nicholas J., Varol Erdem, Vradenburg George, Weiner Michael W., Xiao Guanghua, Xie Lei, Xie Yang, Xu Jia, Yang Hojin, Zhan Xiaowei, Zhou Yunyun, Zhu Fan, Zhu Hongtu, Zhu Shanfeng, Crowdsourced estimation of cognitive decline and resilience in Alzheimer's disease, 10.1016/j.jalz.2016.02.006
  74. Van Essen D. C., Drury H. A., Dickson J., Harwell J., Hanlon D., Anderson C. H., An Integrated Software Suite for Surface-based Analyses of Cerebral Cortex, 10.1136/jamia.2001.0080443
  75. Fischl Bruce, Salat David H., Busa Evelina, Albert Marilyn, Dieterich Megan, Haselgrove Christian, van der Kouwe Andre, Killiany Ron, Kennedy David, Klaveness Shuna, Montillo Albert, Makris Nikos, Rosen Bruce, Dale Anders M., Whole Brain Segmentation, 10.1016/s0896-6273(02)00569-x
  76. Tustison Nicholas J., Cook Philip A., Klein Arno, Song Gang, Das Sandhitsu R., Duda Jeffrey T., Kandel Benjamin M., van Strien Niels, Stone James R., Gee James C., Avants Brian B., Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements, 10.1016/j.neuroimage.2014.05.044
  77. Avants Brian B., Tustison Nicholas J., Wu Jue, Cook Philip A., Gee James C., An Open Source Multivariate Framework for n-Tissue Segmentation with Evaluation on Public Data, 10.1007/s12021-011-9109-y
  78. Klauschen Frederick, Goldman Aaron, Barra Vincent, Meyer-Lindenberg Andreas, Lundervold Arvid, Evaluation of automated brain MR image segmentation and volumetry methods, 10.1002/hbm.20599
  79. Winkler Anderson M., Kochunov Peter, Blangero John, Almasy Laura, Zilles Karl, Fox Peter T., Duggirala Ravindranath, Glahn David C., Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies, 10.1016/j.neuroimage.2009.12.028
  80. Lorio Sara, Kherif Ferath, Ruef Anne, Melie-Garcia Lester, Frackowiak Richard, Ashburner John, Helms Gunther, Lutti Antoine, Draganski Bodgan, Neurobiological origin of spurious brain morphological changes: A quantitative MRI study : Computational Anatomy Studies of the Brain, 10.1002/hbm.23137
  81. Fischl B., Dale A. M., Measuring the thickness of the human cerebral cortex from magnetic resonance images, 10.1073/pnas.200033797
  82. Han Xiao, Jovicich Jorge, Salat David, van der Kouwe Andre, Quinn Brian, Czanner Silvester, Busa Evelina, Pacheco Jenni, Albert Marilyn, Killiany Ronald, Maguire Paul, Rosas Diana, Makris Nikos, Dale Anders, Dickerson Bradford, Fischl Bruce, Reliability of MRI-derived measurements of human cerebral cortical thickness: The effects of field strength, scanner upgrade and manufacturer, 10.1016/j.neuroimage.2006.02.051
  83. Dahnke Robert, Yotter Rachel Aine, Gaser Christian, Cortical thickness and central surface estimation, 10.1016/j.neuroimage.2012.09.050
  84. Lüsebrink Falk, Wollrab Astrid, Speck Oliver, Cortical thickness determination of the human brain using high resolution 3T and 7T MRI data, 10.1016/j.neuroimage.2012.12.016
  85. Salat D. H., Thinning of the Cerebral Cortex in Aging, 10.1093/cercor/bhh032
  86. Fjell A. M., Westlye L. T., Amlien I., Espeseth T., Reinvang I., Raz N., Agartz I., Salat D. H., Greve D. N., Fischl B., Dale A. M, Walhovd K. B., High Consistency of Regional Cortical Thinning in Aging across Multiple Samples, 10.1093/cercor/bhn232
  87. Winkler Anderson M., Sabuncu Mert R., Yeo B.T. Thomas, Fischl Bruce, Greve Douglas N., Kochunov Peter, Nichols Thomas E., Blangero John, Glahn David C., Measuring and comparing brain cortical surface area and other areal quantities, 10.1016/j.neuroimage.2012.03.026
  88. Deppe Michael, Marinell Jasmin, Krämer Julia, Duning Thomas, Ruck Tobias, Simon Ole J., Zipp Frauke, Wiendl Heinz, Meuth Sven G., Increased cortical curvature reflects white matter atrophy in individual patients with early multiple sclerosis, 10.1016/j.nicl.2014.02.012
  89. King Jace B., Lopez-Larson Melissa P., Yurgelun-Todd Deborah A., Mean cortical curvature reflects cytoarchitecture restructuring in mild traumatic brain injury, 10.1016/j.nicl.2016.01.003
  90. RONAN LISA, PIENAAR RUDOLPH, WILLIAMS GUY, BULLMORE ED, CROW TIM J., ROBERTS NEIL, JONES PETER B., SUCKLING JOHN, FLETCHER PAUL C., INTRINSIC CURVATURE: A MARKER OF MILLIMETER-SCALE TANGENTIAL CORTICO-CORTICAL CONNECTIVITY?, 10.1142/s0129065711002948
  91. Ronan L., Voets N., Rua C., Alexander-Bloch A., Hough M., Mackay C., Crow T. J., James A., Giedd J. N., Fletcher P. C., Differential Tangential Expansion as a Mechanism for Cortical Gyrification, 10.1093/cercor/bht082
  92. Rettmann Maryam E., Han Xiao, Xu Chenyang, Prince Jerry L., Automated Sulcal Segmentation Using Watersheds on the Cortical Surface, 10.1006/nimg.2001.0975
  93. Lohmann Gabriele, von Cramon D.Yves, Automatic labelling of the human cortical surface using sulcal basins, 10.1016/s1361-8415(00)00024-4
  94. Kao Chiu-Yen, Hofer Michael, Sapiro Guillermo, Stern Josh, Rehm Kelly, Rottenberg David A., A Geometric Method for Automatic Extraction of Sulcal Fundi, 10.1109/tmi.2006.886810
  95. G Li, Med Image Comput Comput Assist Interv [Internet], 11, 270 (2008)
  96. Le Troter A., Auzias G., Coulon O., Automatic sulcal line extraction on cortical surfaces using geodesic path density maps, 10.1016/j.neuroimage.2012.04.021
  97. Im Kiho, Jo Hang Joon, Mangin Jean-François, Evans Alan C., Kim Sun I., Lee Jong-Min, Spatial Distribution of Deep Sulcal Landmarks and Hemispherical Asymmetry on the Cortical Surface, 10.1093/cercor/bhp127
  98. Im Kiho, Pienaar Rudolph, Lee Jong-Min, Seong Joon-Kyung, Choi Yu Yong, Lee Kun Ho, Grant P. Ellen, Quantitative comparison and analysis of sulcal patterns using sulcal graph matching: A twin study, 10.1016/j.neuroimage.2011.04.062
  99. Takerkart Sylvain, Auzias Guillaume, Brun Lucile, Coulon Olivier, Structural graph-based morphometry: A multiscale searchlight framework based on sulcal pits, 10.1016/j.media.2016.04.011
  100. Coleman Ryan G., Sharp Kim A., Travel Depth, a New Shape Descriptor for Macromolecules: Application to Ligand Binding, 10.1016/j.jmb.2006.07.022
  101. Giard J, Rondao Alface Patrice, Gala J, Macq B, Fast Surface-Based Travel Depth Estimation Algorithm for Macromolecule Surface Shape Description, 10.1109/tcbb.2009.53
  102. Yun Hyuk Jin, Im Kiho, Jin-Ju Yang, Yoon Uicheul, Lee Jong-Min, Automated Sulcal Depth Measurement on Cortical Surface Reflecting Geometrical Properties of Sulci, 10.1371/journal.pone.0055977
  103. Boucher Maxime, Whitesides Sue, Evans Alan, Depth potential function for folding pattern representation, registration and analysis, 10.1016/j.media.2008.09.001
  104. Bao F, Lee N, Hame Y, Im K, Riviera D, Li G, et al. Automated extraction of nested sulcal features from human brain MRI data. In: 17th annual meeting for the Organization of Human Brain Mapping [Internet]. 2011. https://github.com/binarybottle/nestedsulcusfeatures_HBM2011
  105. N Lee, Frontiers in Neuroinformatics [Internet] (2011)
  106. Reuter Martin, Wolter Franz-Erich, Peinecke Niklas, Laplace–Beltrami spectra as ‘Shape-DNA’ of surfaces and solids, 10.1016/j.cad.2005.10.011
  107. Reuter Martin, Wolter Franz-Erich, Shenton Martha, Niethammer Marc, Laplace–Beltrami eigenvalues and topological features of eigenfunctions for statistical shape analysis, 10.1016/j.cad.2009.02.007
  108. Reuter Martin, Schmansky Nicholas J., Rosas H. Diana, Fischl Bruce, Within-subject template estimation for unbiased longitudinal image analysis, 10.1016/j.neuroimage.2012.02.084
  109. Konukoglu E., Glocker B., Criminisi A., Pohl K. M., WESD--Weighted Spectral Distance for Measuring Shape Dissimilarity, 10.1109/tpami.2012.275
  110. Celebi M.E., Aslandogan Y.A., A comparative study of three moment-based shape descriptors, 10.1109/itcc.2005.3
  111. MANGIN J, POUPON F, DUCHESNAY E, RIVIERE D, CACHIA A, COLLINS D, EVANS A, REGIS J, Brain morphometry using 3D moment invariants, 10.1016/j.media.2004.06.016
  112. Novotni Marcin, Klein Reinhard, Shape retrieval using 3D Zernike descriptors, 10.1016/j.cad.2004.01.005
  113. Pozo J M, Villa-Uriol M.-C, Frangi A F, Efficient 3D Geometric and Zernike Moments Computation from Unstructured Surface Meshes, 10.1109/tpami.2010.139
  114. Rosas H. D., Liu A. K., Hersch S., Glessner M., Ferrante R. J., Salat D. H., van der Kouwe A., Jenkins B. G., Dale A. M., Fischl B., Regional and progressive thinning of the cortical ribbon in Huntington's disease, 10.1212/wnl.58.5.695
  115. Kabani Noor, Le Goualher Georges, MacDonald David, Evans Alan C., Measurement of Cortical Thickness Using an Automated 3-D Algorithm: A Validation Study, 10.1006/nimg.2000.0652
  116. Li Gang, Guo Lei, Nie Jingxin, Liu Tianming, An automated pipeline for cortical sulcal fundi extraction, 10.1016/j.media.2010.01.005
  117. Jovicich Jorge, Marizzoni Moira, Sala-Llonch Roser, Bosch Beatriz, Bartrés-Faz David, Arnold Jennifer, Benninghoff Jens, Wiltfang Jens, Roccatagliata Luca, Nobili Flavio, Hensch Tilman, Tränkner Anja, Schönknecht Peter, Leroy Melanie, Lopes Renaud, Bordet Régis, Chanoine Valérie, Ranjeva Jean-Philippe, Didic Mira, Gros-Dagnac Hélène, Payoux Pierre, Zoccatelli Giada, Alessandrini Franco, Beltramello Alberto, Bargalló Núria, Blin Olivier, Frisoni Giovanni B., Brain morphometry reproducibility in multi-center 3T MRI studies: A comparison of cross-sectional and longitudinal segmentations, 10.1016/j.neuroimage.2013.05.007
  118. Klein A, Chaibub Neto E, Giard J, Bao F, Hame Y, Reuter M, et al. Shape analysis of 101 healthy human brains. In: 20th annual meeting for the Organization of Human Brain Mapping [Internet]. 2014. https://mfr.osf.io/render?url=https://osf.io/w2vda/?action=download%26mode=render
  119. Klein A, Chaibub Neto E, Ghosh S, ADNI. Detailed shape analysis of healthy brains and brains with Alzheimer’s disease. In: 21st annual meeting for the Organization of Human Brain Mapping [Internet]. 2015. https://mfr.osf.io/render?url=https://osf.io/xfts3/?action=download%26mode=render
  120. Zuo Xi-Nian, Anderson Jeffrey S, Bellec Pierre, Birn Rasmus M, Biswal Bharat B, Blautzik Janusch, Breitner John C.S, Buckner Randy L, Calhoun Vince D, Castellanos F. Xavier, Chen Antao, Chen Bing, Chen Jiangtao, Chen Xu, Colcombe Stanley J, Courtney William, Craddock R Cameron, Di Martino Adriana, Dong Hao-Ming, Fu Xiaolan, Gong Qiyong, Gorgolewski Krzysztof J, Han Ying, He Ye, He Yong, Ho Erica, Holmes Avram, Hou Xiao-Hui, Huckins Jeremy, Jiang Tianzi, Jiang Yi, Kelley William, Kelly Clare, King Margaret, LaConte Stephen M, Lainhart Janet E, Lei Xu, Li Hui-Jie, Li Kaiming, Li Kuncheng, Lin Qixiang, Liu Dongqiang, Liu Jia, Liu Xun, Liu Yijun, Lu Guangming, Lu Jie, Luna Beatriz, Luo Jing, Lurie Daniel, Mao Ying, Margulies Daniel S, Mayer Andrew R, Meindl Thomas, Meyerand Mary E, Nan Weizhi, Nielsen Jared A, O’Connor David, Paulsen David, Prabhakaran Vivek, Qi Zhigang, Qiu Jiang, Shao Chunhong, Shehzad Zarrar, Tang Weijun, Villringer Arno, Wang Huiling, Wang Kai, Wei Dongtao, Wei Gao-Xia, Weng Xu-Chu, Wu Xuehai, Xu Ting, Yang Ning, Yang Zhi, Zang Yu-Feng, Zhang Lei, Zhang Qinglin, Zhang Zhe, Zhang Zhiqiang, Zhao Ke, Zhen Zonglei, Zhou Yuan, Zhu Xing-Ting, Milham Michael P, An open science resource for establishing reliability and reproducibility in functional connectomics, 10.1038/sdata.2014.49
  121. Maclaren Julian, Han Zhaoying, Vos Sjoerd B, Fischbein Nancy, Bammer Roland, Reliability of brain volume measurements: A test-retest dataset, 10.1038/sdata.2014.37
  122. Huang Lijie, Huang Taicheng, Zhen Zonglei, Liu Jia, A test-retest dataset for assessing long-term reliability of brain morphology and resting-state brain activity, 10.1038/sdata.2016.16
  123. Holmes Avram J., Hollinshead Marisa O., O’Keefe Timothy M., Petrov Victor I., Fariello Gabriele R., Wald Lawrence L., Fischl Bruce, Rosen Bruce R., Mair Ross W., Roffman Joshua L., Smoller Jordan W., Buckner Randy L., Brain Genomics Superstruct Project initial data release with structural, functional, and behavioral measures, 10.1038/sdata.2015.31
  124. Van Essen David C., Smith Stephen M., Barch Deanna M., Behrens Timothy E.J., Yacoub Essa, Ugurbil Kamil, The WU-Minn Human Connectome Project: An overview, 10.1016/j.neuroimage.2013.05.041
  125. Gorgolewski Krzysztof J, Mendes Natacha, Wilfling Domenica, Wladimirow Elisabeth, Gauthier Claudine J, Bonnen Tyler, Ruby Florence J.M, Trampel Robert, Bazin Pierre-Louis, Cozatl Roberto, Smallwood Jonathan, Margulies Daniel S, A high resolution 7-Tesla resting-state fMRI test-retest dataset with cognitive and physiological measures, 10.1038/sdata.2014.54
  126. Auzias G., Brun L., Deruelle C., Coulon O., Benchmark data for sulcal pits extraction algorithms, 10.1016/j.dib.2015.10.004
  127. Huo Yuankai, Plassard Andrew J., Carass Aaron, Resnick Susan M., Pham Dzung L., Prince Jerry L., Landman Bennett A., Consistent cortical reconstruction and multi-atlas brain segmentation, 10.1016/j.neuroimage.2016.05.030
  128. Schmidhuber Jürgen, Deep learning in neural networks: An overview, 10.1016/j.neunet.2014.09.003
  129. Lee Noah, Laine Andrew F., Klein Arno, Towards a deep learning approach to brain parcellation, 10.1109/isbi.2011.5872414
Bibliographic reference Klein, Arno ; Ghosh, Satrajit S. ; Bao, Forrest S. ; Giard, Joachim ; Häme, Yrjö ; et. al. Mindboggling morphometry of human brains. In: PLOS Computational Biology, Vol. 13, no.2, p. e1005350 (2017)
Permanent URL http://hdl.handle.net/2078.1/202304