User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

The weighted arborescence constraint

  • Open access
  • PDF
  • 513.61 K
  1. Beldiceanu Nicolas, Flener Pierre, Lorca Xavier, The tree Constraint, Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems (2005) ISBN:9783540261520 p.64-78, 10.1007/11493853_7
  2. Bock, F.: An algorithm to construct a minimum directed spanning tree in a directed network. Dev. Oper. Res. 1, 29–44 (1971)
  3. Chu, Y.J., Liu, T.H.: On the shortest arborescence of a directed graph. Sci. Sin. Ser. A 14, 1396–1400 (1965)
  4. Dooms Grégoire, Katriel Irit, The Minimum Spanning Tree Constraint, Principles and Practice of Constraint Programming - CP 2006 (2006) ISBN:9783540462675 p.152-166, 10.1007/11889205_13
  5. Dooms Grégoire, Katriel Irit, The “Not-Too-Heavy Spanning Tree” Constraint, Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems (2007) ISBN:9783540723967 p.59-70, 10.1007/978-3-540-72397-4_5
  6. Edmonds, J.: Optimum branchings. J. Res. Nat. Bur. Stand. B 71(4), 125–130 (1967)
  7. Fahle Torsten, Sellmann Meinolf, 10.1023/a:1021193019522
  8. Fischetti Matteo, Toth Paolo, An additive bounding procedure for the asymmetric travelling salesman problem, 10.1007/bf01585701
  9. Fischetti, M., Toth, P.: An efficient algorithm for min-sum arborescence problem on complete digraphs. Manage. Sci. 9(3), 1520–1536 (1993)
  10. Fischetti Matteo, Vigo Daniele, A branch-and-cut algorithm for the resource-constrained minimum-weight arborescence problem, 10.1002/(sici)1097-0037(199701)29:1<55::aid-net6>3.0.co;2-b
  11. Focacci Filippo, Lodi Andrea, Milano Michela, Vigo Daniele, Solving TSP through the Integration of OR and CP Techniques, 10.1016/s1571-0653(04)00002-2
  12. Gabow Harold N., Galil Zvi, Spencer Thomas, Tarjan Robert E., Efficient algorithms for finding minimum spanning trees in undirected and directed graphs, 10.1007/bf02579168
  13. Graham, R.L., Hell, P.: On the history of the minimum spanning tree problem. Hist. Comput. 7, 13–25 (1985)
  14. Guignard Monique, Rosenwein Moshe B., An application of lagrangean decomposition to the resource-constrained minimum weighted arborescence problem, 10.1002/net.3230200306
  15. Houndji, V.R., Schaus, P.: Cp4cap: Constraint programming for constrained arborescence problem. https://bitbucket.org/ratheilesse/cp4cap
  16. Kleinberg, J., Tardos, E.: Minimum-cost arborescences: a multi-phase greedy algorithm. In: Algorithm Design, Tsinghua University Press (2005)
  17. Lorca, X.: Contraintes de Partitionnement de Graphe. Ph. D. thesis, Université de Nantes (2010)
  18. Fages Jean-Guillaume, Lorca Xavier, Revisiting the tree Constraint, Principles and Practice of Constraint Programming – CP 2011 (2011) ISBN:9783642237850 p.271-285, 10.1007/978-3-642-23786-7_22
  19. Mendelson Ran, Tarjan Robert E., Thorup Mikkel, Zwick Uri, Melding Priority Queues, Algorithm Theory - SWAT 2004 (2004) ISBN:9783540223399 p.223-235, 10.1007/978-3-540-27810-8_20
  20. Pesant Gilles, Gendreau Michel, Potvin Jean-Yves, Rousseau Jean-Marc, An Exact Constraint Logic Programming Algorithm for the Traveling Salesman Problem with Time Windows, 10.1287/trsc.32.1.12
  21. Régin Jean-Charles, Simpler and Incremental Consistency Checking and Arc Consistency Filtering Algorithms for the Weighted Spanning Tree Constraint, Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems ISBN:9783540681540 p.233-247, 10.1007/978-3-540-68155-7_19
  22. Régin Jean-Charles, Rousseau Louis-Martin, Rueher Michel, van Hoeve Willem-Jan, The Weighted Spanning Tree Constraint Revisited, Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems (2010) ISBN:9783642135194 p.287-291, 10.1007/978-3-642-13520-0_31
  23. Tarjan R. E., Finding optimum branchings, 10.1002/net.3230070103
  24. OscaR Team. Oscar: Scala in or (2012). https://bitbucket.org/oscarlib/oscar
  25. Van Cauwelaert Sascha, Lombardi Michele, Schaus Pierre, Understanding the Potential of Propagators, Integration of AI and OR Techniques in Constraint Programming (2015) ISBN:9783319180076 p.427-436, 10.1007/978-3-319-18008-3_29
Bibliographic reference Houndji, Vinasetan Ratheil ; Schaus, Pierre ; Hounkonnou, Mahouton Norbert ; Wolsey, Laurence. The weighted arborescence constraint.International conference on integration of artificial intelligence and operations research techniques in constraint program (Padova, Italy, du 05/06/2017 au 08/06/2017). In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat, Vol. 10335 LNCS, p. 185-201 (2017)
Permanent URL http://hdl.handle.net/2078.1/198034