User menu

Accès à distance ? S'identifier sur le proxy UCLouvain | Saint-Louis

Classification and evaluation strategies of auto-segmentation approaches for PET: Report of AAPM task group No. 211.

  1. MacManus Michael, Nestle Ursula, Rosenzweig Kenneth E., Carrio Ignasi, Messa Cristina, Belohlavek Otakar, Danna Massimo, Inoue Tomio, Deniaud-Alexandre Elizabeth, Schipani Stefano, Watanabe Naoyuki, Dondi Maurizio, Jeremic Branislav, Use of PET and PET/CT for Radiation Therapy Planning: IAEA expert report 2006–2007, 10.1016/j.radonc.2008.11.008
  2. Ling C.Clifton, Humm John, Larson Steven, Amols Howard, Fuks Zvi, Leibel Steven, Koutcher Jason A, Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality, 10.1016/s0360-3016(00)00467-3
  3. Huang (Henry) Sung-Cheng, Anatomy of SUV, 10.1016/s0969-8051(00)00155-4
  4. Boellaard R., Standards for PET Image Acquisition and Quantitative Data Analysis, 10.2967/jnumed.108.057182
  5. Gambhir, J Nucl Med, 42, 1S (2001)
  6. Heron Dwight E., Andrade Regiane S., Beriwal Sushil, Smith Ryan P., PET-CT in Radiation Oncology : The Impact on Diagnosis, Treatment Planning, and Assessment of Treatment Response, 10.1097/coc.0b013e318162f150
  7. Zaidi Habib, Vees Hansjörg, Wissmeyer Michael, Molecular PET/CT Imaging-Guided Radiation Therapy Treatment Planning, 10.1016/j.acra.2009.02.014
  8. Nestle Ursula, Weber Wolfgang, Hentschel Michael, Grosu Anca-Ligia, Biological imaging in radiation therapy: role of positron emission tomography, 10.1088/0031-9155/54/1/r01
  9. Mac Manus Michael P., Hicks Rodney J., The Role of Positron Emission Tomography/Computed Tomography in Radiation Therapy Planning for Patients with Lung Cancer, 10.1053/j.semnuclmed.2012.04.003
  10. Mac Manus Michael P., Everitt Sarah, Bayne Mike, Ball David, Plumridge Nikki, Binns David, Herschtal Alan, Cruickshank Deborah, Bressel Mathias, Hicks Rodney J., The use of fused PET/CT images for patient selection and radical radiotherapy target volume definition in patients with non-small cell lung cancer: Results of a prospective study with mature survival data, 10.1016/j.radonc.2012.12.018
  11. Gregoire, J Nucl Med, 48, 68S (2007)
  12. Chua Sue, Dickson John, Groves Ashley M., PET imaging for prediction of response to therapy and outcome in oesophageal carcinoma, 10.1007/s00259-011-1858-1
  13. Cazaentre Thomas, Morschhauser Franck, Vermandel Maximilien, Betrouni Nacim, Prangère Thierry, Steinling Marc, Huglo Damien, Pre-therapy 18F-FDG PET quantitative parameters help in predicting the response to radioimmunotherapy in non-Hodgkin lymphoma, 10.1007/s00259-009-1275-x
  14. Lee Ho Yun, Hyun Seung Hyup, Lee Kyung Soo, Kim Byung-Tae, Kim Jhingook, Shim Young Mog, Ahn Myung-Ju, Kim Tae Sung, Yi Chin A, Chung Myung Jin, Volume-Based Parameter of 18F-FDG PET/CT in Malignant Pleural Mesothelioma: Prediction of Therapeutic Response and Prognostic Implications, 10.1245/s10434-010-1107-z
  15. El Naqa I., Grigsby P.W., Apte A., Kidd E., Donnelly E., Khullar D., Chaudhari S., Yang D., Schmitt M., Laforest Richard, Thorstad W.L., Deasy J.O., Exploring feature-based approaches in PET images for predicting cancer treatment outcomes, 10.1016/j.patcog.2008.08.011
  16. Vaidya Manushka, Creach Kimberly M., Frye Jennifer, Dehdashti Farrokh, Bradley Jeffrey D., El Naqa Issam, Combined PET/CT image characteristics for radiotherapy tumor response in lung cancer, 10.1016/j.radonc.2011.10.014
  17. Soret M., Bacharach S. L., Buvat I., Partial-Volume Effect in PET Tumor Imaging, 10.2967/jnumed.106.035774
  18. Alessio Adam M., Kinahan Paul E., Cheng Phillip M., Vesselle Hubert, Karp Joel S., PET/CT scanner instrumentation, challenges, and solutions, 10.1016/j.rcl.2004.08.001
  19. Lartizien, J Nucl Med, 44, 276 (2003)
  20. Visvikis D., Griffiths D., Costa D. C., Bomanji J., Ell P. J., Clinical evaluation of 2D versus 3D whole-body PET image quality using a dedicated BGO PET scanner, 10.1007/s00259-005-1809-9
  21. Mawlawi Osama, Pan Tinsu, Macapinlac Homer A., PET/CT Imaging Techniques, Considerations, and Artifacts : , 10.1097/00005382-200605000-00002
  22. Kirov, Positron Emission Tomography-Current Clinical and Research Aspects (2012)
  23. Nestle, J Nucl Med, 46, 1342 (2005)
  24. Terezakis Stephanie A., Hunt Margie A., Kowalski Alexander, McCann Patrick, Schmidtlein C. Ross, Reiner Anne, Gönen Mithat, Kirov Assen S., Gonzales Anne Marie, Schöder Heiko, Yahalom Joachim, [18F]FDG-Positron Emission Tomography Coregistration With Computed Tomography Scans for Radiation Treatment Planning of Lymphoma and Hematologic Malignancies, 10.1016/j.ijrobp.2010.06.044
  25. Steenbakkers Roel J.H.M., Duppen Joop C., Fitton Isabelle, Deurloo Kirsten E.I., Zijp Lambert J., Comans Emile F.I., Uitterhoeve Apollonia L.J., Rodrigus Patrick T.R., Kramer Gijsbert W.P., Bussink Johan, De Jaeger Katrien, Belderbos José S.A., Nowak Peter J.C.M., van Herk Marcel, Rasch Coen R.N., Reduction of observer variation using matched CT-PET for lung cancer delineation: A three-dimensional analysis, 10.1016/j.ijrobp.2005.06.034
  26. Hofheinz F., Pötzsch C., Oehme L., Beuthien-Baumann B., Steinbach J., Kotzerke J., van den Hoff J., Automatic volume delineation in oncological PET : Evaluation of a dedicated software tool and comparison with manual delineation in clinical data sets, 10.3413/nukmed-0419-11-07
  27. Boudraa A. O., Zaidi H., Image Segmentation Techniques in Nuclear Medicine Imaging, Quantitative Analysis in Nuclear Medicine Imaging ISBN:0387238549 p.308-357, 10.1007/0-387-25444-7_10
  28. Belhassen Saoussen, Zaidi Habib, A novel fuzzy C-means algorithm for unsupervised heterogeneous tumor quantification in PET : Unsupervised segmentation of heterogeneous tumors in PET, 10.1118/1.3301610
  29. Lee John A., Segmentation of positron emission tomography images: Some recommendations for target delineation in radiation oncology, 10.1016/j.radonc.2010.07.003
  30. Schaefer Andrea, Kremp Stephanie, Hellwig Dirk, Rübe Christian, Kirsch Carl-Martin, Nestle Ursula, A contrast-oriented algorithm for FDG-PET-based delineation of tumour volumes for the radiotherapy of lung cancer: derivation from phantom measurements and validation in patient data, 10.1007/s00259-008-0875-1
  31. El Naqa Issam, Yang Deshan, Apte Aditya, Khullar Divya, Mutic Sasa, Zheng Jie, Bradley Jeffrey D., Grigsby Perry, Deasy Joseph O., Concurrent multimodality image segmentation by active contours for radiotherapy treatment planninga) : Concurrent multimodality image segmentation for radiotherapy treatment planning, 10.1118/1.2799886
  32. Qi Song, Junjie Bai, Dongfeng Han, Bhatia Sudershan, Wenqing Sun, Rockey William, Bayouth John E., Buatti John M., Xiaodong Wu, Optimal Co-Segmentation of Tumor in PET-CT Images With Context Information, 10.1109/tmi.2013.2263388
  33. Bagci Ulas, Udupa Jayaram K., Mendhiratta Neil, Foster Brent, Xu Ziyue, Yao Jianhua, Chen Xinjian, Mollura Daniel J., Joint segmentation of anatomical and functional images: Applications in quantification of lesions from PET, PET-CT, MRI-PET, and MRI-PET-CT images, 10.1016/
  34. Markel Daniel, Zaidi Habib, El Naqa Issam, Novel multimodality segmentation using level sets and Jensen-Rényi divergence : Multimodality segmentation using levels sets and Jensen Renyi, 10.1118/1.4828836
  35. Hatt M., Boussion N., Cheze-Le Rest C., Visvikis D., Pradier O., Méthodologies de définition automatique des volumes métaboliquement actifs en TEP : évaluation et perspectives, 10.1016/j.canrad.2011.07.243
  36. Foster Brent, Bagci Ulas, Mansoor Awais, Xu Ziyue, Mollura Daniel J., A review on segmentation of positron emission tomography images, 10.1016/j.compbiomed.2014.04.014
  37. Geets Xavier, Lee John A., Bol Anne, Lonneux Max, Grégoire Vincent, A gradient-based method for segmenting FDG-PET images: methodology and validation, 10.1007/s00259-006-0363-4
  38. De Bernardi Elisabetta, Faggiano Elena, Zito Felicia, Gerundini Paolo, Baselli Giuseppe, Lesion quantification in oncological positron emission tomography: A maximum likelihood partial volume correction strategy : ML PVEC lesion quantification in PET, 10.1118/1.3130019
  39. Iglesias Juan Eugenio, Sabuncu Mert R., Multi-atlas segmentation of biomedical images: A survey, 10.1016/
  40. Huan Yu, Caldwell C., Mah K., Mozeg D., Coregistered FDG PET/CT-Based Textural Characterization of Head and Neck Cancer for Radiation Treatment Planning, 10.1109/tmi.2008.2004425
  41. Udupa Jayaram K., LeBlanc Vicki R., Zhuge Ying, Imielinska Celina, Schmidt Hilary, Currie Leanne M., Hirsch Bruce E., Woodburn James, A framework for evaluating image segmentation algorithms, 10.1016/j.compmedimag.2005.12.001
  42. Tylski P., Stute S., Grotus N., Doyeux K., Hapdey S., Gardin I., Vanderlinden B., Buvat I., Comparative Assessment of Methods for Estimating Tumor Volume and Standardized Uptake Value in 18F-FDG PET, 10.2967/jnumed.109.066241
  43. Hatt Mathieu, Cheze Le Rest Catherine, Albarghach Nidal, Pradier Olivier, Visvikis Dimitris, PET functional volume delineation: a robustness and repeatability study, 10.1007/s00259-010-1688-6
  44. Berthon B., Marshall C., Edwards A., Evans M., Spezi E., Influence of cold walls on PET image quantification and volume segmentation: A phantom study : Influence of cold walls on PET image quantification and volume segmentation, 10.1118/1.4813302
  45. Berthon B., Marshall C., Evans M., Spezi E., Evaluation of advanced automatic PET segmentation methods using nonspherical thin-wall inserts : Evaluation of PET segmentation methods using nonspherical inserts, 10.1118/1.4863480
  46. Biehl, J Nucl Med, 47, 1808 (2006)
  47. van Dalen Jorn A., Hoffmann Aswin L., Dicken Volker, Vogel Wouter V., Wiering Bastiaan, Ruers Theo J., Karssemeijer Nico, Oyen Wim J.G., A novel iterative method for lesion delineation and volumetric quantification with FDG PET : , 10.1097/mnm.0b013e328155d154
  48. Erdi Yusuf E., Mawlawi O., Larson Steven M., Imbriaco M., Yeung H., Finn R., Humm John L., Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding, 10.1002/(sici)1097-0142(19971215)80:12+<2505::aid-cncr24>;2-f
  49. Paulino Arnold C, Johnstone Peter A.S, FDG-PET in radiotherapy treatment planning: Pandora's box?, 10.1016/j.ijrobp.2003.10.045
  50. Biehl, J Nucl Med, 47, 1808 (2006)
  51. Jentzen, J Nucl Med, 48, 108 (2007)
  52. Nehmeh S. A., El-Zeftawy H., Greco C., Schwartz J., Erdi Y. E., Kirov A., Schmidtlein C. R., Gyau A. B., Larson S. M., Humm J. L., An iterative technique to segment PET lesions using a Monte Carlo based mathematical model : PET lesion segmentation, 10.1118/1.3222732
  53. Black Quinten C., Grills Inga S., Kestin Larry L., Wong Ching-Yee O., Wong John W., Martinez Alvaro A., Yan Di, Defining a radiotherapy target with positron emission tomography, 10.1016/j.ijrobp.2004.06.254
  54. Zaidi Habib, El Naqa Issam, PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques, 10.1007/s00259-010-1423-3
  55. Li Hua, Thorstad Wade L., Biehl Kenneth J., Laforest Richard, Su Yi, Shoghi Kooresh I., Donnelly Eric D., Low Daniel A., Lu Wei, A novel PET tumor delineation method based on adaptive region-growing and dual-front active contours : PET tumor delineation approach, 10.1118/1.2956713
  56. Wanet Marie, Lee John Aldo, Weynand Birgit, De Bast Marc, Poncelet Alain, Lacroix Valérie, Coche Emmanuel, Grégoire Vincent, Geets Xavier, Gradient-based delineation of the primary GTV on FDG-PET in non-small cell lung cancer: A comparison with threshold-based approaches, CT and surgical specimens, 10.1016/j.radonc.2010.10.006
  57. Adams R., Bischof L., Seeded region growing, 10.1109/34.295913
  58. Pavlidis T., Liow Y.-T., Integrating region growing and edge detection, 10.1109/34.49050
  59. Ibanez, The ITK Software Guide (2017)
  60. Day Ellen, Betler James, Parda David, Reitz Bodo, Kirichenko Alexander, Mohammadi Seyed, Miften Moyed, A region growing method for tumor volume segmentation on PET images for rectal and anal cancer patients : A region growing method for tumor segmentation, 10.1118/1.3213099
  61. Hofheinz F., Langner J., Petr J., Beuthien-Baumann B., Steinbach J., Kotzerke J., van den Hoff J., An automatic method for accurate volume delineation of heterogeneous tumors in PET : Automatic volume delineation of heterogeneous tumors in PET, 10.1118/1.4812892
  62. Pieczynski, Trait Signal, 20, 255 (2003)
  63. Delignon Y., Marzouki A., Pieczynski W., Estimation of generalized mixtures and its application in image segmentation, 10.1109/83.624951
  64. Montgomery David W. G., Amira Abbes, Zaidi Habib, Fully automated segmentation of oncological PET volumes using a combined multiscale and statistical model : Automated segmentation of oncological PET volumes, 10.1118/1.2432404
  65. Aristophanous Michalis, Penney Bill C., Martel Mary K., Pelizzari Charles A., A Gaussian mixture model for definition of lung tumor volumes in positron emission tomography : GMM lung tumor volume definition for PET images, 10.1118/1.2791035
  66. Caillol H., Pieczynski W., Hillion A., Estimation of fuzzy Gaussian mixture and unsupervised statistical image segmentation, 10.1109/83.557353
  67. Salzenstein F., Collet C., Lecam S., Hatt M., Non-stationary fuzzy Markov chain, 10.1016/j.patrec.2007.07.002
  68. Hatt M., Cheze le Rest C., Turzo A., Roux C., Visvikis D., A Fuzzy Locally Adaptive Bayesian Segmentation Approach for Volume Determination in PET, 10.1109/tmi.2008.2012036
  69. Hatt M, Lamare F, Boussion N, Turzo A, Collet C, Salzenstein F, Roux C, Jarritt P, Carson K, Rest C Cheze-Le, Visvikis D, Fuzzy hidden Markov chains segmentation for volume determination and quantitation in PET, 10.1088/0031-9155/52/12/010
  70. Hatt Mathieu, Cheze le Rest Catherine, Descourt Patrice, Dekker André, De Ruysscher Dirk, Oellers Michel, Lambin Philippe, Pradier Olivier, Visvikis Dimitris, Accurate Automatic Delineation of Heterogeneous Functional Volumes in Positron Emission Tomography for Oncology Applications, 10.1016/j.ijrobp.2009.08.018
  71. Duda, Pattern Classification (2001)
  72. Jain A. K., Murty M. N., Flynn P. J., Data clustering: a review, 10.1145/331499.331504
  73. Berthon Beatrice, Marshall Christopher, Evans Mererid, Spezi Emiliano, ATLAAS: an automatic decision tree-based learning algorithm for advanced image segmentation in positron emission tomography, 10.1088/0031-9155/61/13/4855
  74. LeCun Yann, Bengio Yoshua, Hinton Geoffrey, Deep learning, 10.1038/nature14539
  75. Avendi M.R., Kheradvar Arash, Jafarkhani Hamid, A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI, 10.1016/
  76. Cha Kenny H., Hadjiiski Lubomir, Samala Ravi K., Chan Heang-Ping, Caoili Elaine M., Cohan Richard H., Urinary bladder segmentation in CT urography using deep-learning convolutional neural network and level sets : Bladder segmentation using DL-CNN and level sets, 10.1118/1.4944498
  77. Kerhet A., Small C., Quon H., Riauka T., Schrader L., Greiner R., Yee D., McEwan A., Roa W., Application of machine learning methodology for PET-based definition of lung cancer, 10.3747/co.v17i1.394
  78. Lian Chunfeng, Ruan Su, Denœux Thierry, Jardin Fabrice, Vera Pierre, Selecting radiomic features from FDG-PET images for cancer treatment outcome prediction, 10.1016/
  79. Hatt Mathieu, Tixier Florent, Pierce Larry, Kinahan Paul E., Le Rest Catherine Cheze, Visvikis Dimitris, Characterization of PET/CT images using texture analysis: the past, the present… any future?, 10.1007/s00259-016-3427-0
  80. Materka, COST B11 (1998)
  81. Jain Anil K., Farrokhnia Farshid, Unsupervised texture segmentation using Gabor filters, 10.1016/0031-3203(91)90143-s
  82. Arivazhagan S, Ganesan L, Texture classification using wavelet transform, 10.1016/s0167-8655(02)00390-2
  83. Stachowiak G. P., Podsiadlo P., Stachowiak G. W., A Comparison of Texture Feature Extraction Methods for Machine Condition Monitoring and Failure Analysis, 10.1007/s11249-005-8303-1
  84. Haralick Robert M., Shanmugam K., Dinstein Its'Hak, Textural Features for Image Classification, 10.1109/tsmc.1973.4309314
  85. Amadasun M., King R., Textural features corresponding to textural properties, 10.1109/21.44046
  86. Galloway, Comput Vision Graph, 4, 172 (1975)
  87. Mohamed S. S., Youssef A. M., El-Saadany E. F., Salama M. M. A., Artificial Life Feature Selection Techniques for Prostrate Cancer Diagnosis Using TRUS Images, Lecture Notes in Computer Science (2005) ISBN:9783540290698 p.903-913, 10.1007/11559573_110
  88. Woods Brent J., Clymer Bradley D., Kurc Tahsin, Heverhagen Johannes T., Stevens Robert, Orsdemir Adem, Bulan Orhan, Knopp Michael V., Malignant-lesion segmentation using 4D co-occurrence texture analysis applied to dynamic contrast-enhanced magnetic resonance breast image data, 10.1002/jmri.20837
  89. McNitt-Gray Michael F., Hart Eric M., Wyckoff Nathaniel, Sayre James W., Goldin Jonathan G., Aberle Denise R., A pattern classification approach to characterizing solitary pulmonary nodules imaged on high resolution CT: Preliminary results, 10.1118/1.598603
  90. Silva AC Paiva AC Carvalho PCP Gattass M Semivariogram and SGLDM methods comparison for the diagnosis of solitary lung nodule 2005 479 486
  91. UPPALURI RENUKA, HOFFMAN ERIC A., SONKA MILAN, HARTLEY PATRICK G., HUNNINGHAKE GARY W., McLENNAN GEOFFREY, Computer Recognition of Regional Lung Disease Patterns, 10.1164/ajrccm.160.2.9804094
  92. Kauczor Hans-Ulrich, Heitmann Kjell, Heussel Claus Peter, Marwede Dirk, Uthmann Thomas, Thelen Manfred, Automatic Detection and Quantification of Ground-Glass Opacities on High-Resolution CT Using Multiple Neural Networks : Comparison with a Density Mask, 10.2214/ajr.175.5.1751329
  93. Chabat François, Yang Guang-Zhong, Hansell David M., Obstructive Lung Diseases: Texture Classification for Differentiation at CT, 10.1148/radiol.2283020505
  94. Ganeshan Balaji, Abaleke Sandra, Young Rupert C.D., Chatwin Christopher R., Miles Kenneth A., Texture analysis of non-small cell lung cancer on unenhanced computed tomography: initial evidence for a relationship with tumour glucose metabolism and stage, 10.1102/1470-7330.2010.0021
  95. Pichler B. J., Kolb A., Nagele T., Schlemmer H.-P., PET/MRI: Paving the Way for the Next Generation of Clinical Multimodality Imaging Applications, 10.2967/jnumed.109.061853
  96. Zaidi Habib, Del Guerra Alberto, An outlook on future design of hybrid PET/MRI systems : Design of hybrid PET/MRI scanners, 10.1118/1.3633909
  97. Yu Huan, Caldwell Curtis, Mah Katherine, Poon Ian, Balogh Judith, MacKenzie Robert, Khaouam Nader, Tirona Romeo, Automated Radiation Targeting in Head-and-Neck Cancer Using Region-Based Texture Analysis of PET and CT Images, 10.1016/j.ijrobp.2009.04.043
  98. Markel Daniel, Caldwell Curtis, Alasti Hamideh, Soliman Hany, Ung Yee, Lee Justin, Sun Alexander, Automatic Segmentation of Lung Carcinoma Using 3D Texture Features in 18-FDG PET/CT, 10.1155/2013/980769
  99. Schaefer A., Vermandel M., Baillet C., Dewalle-Vignion A. S., Modzelewski R., Vera P., Massoptier L., Parcq C., Gibon D., Fechter T., Nemer U., Gardin I., Nestle U., Impact of consensus contours from multiple PET segmentation methods on the accuracy of functional volume delineation, 10.1007/s00259-015-3239-7
  100. Shepherd Tony, Teras Mika, Beichel Reinhard R., Boellaard Ronald, Bruynooghe Michel, Dicken Volker, Gooding Mark J., Julyan Peter J., Lee John A., Lefevre Sébastien, Mix Michael, Naranjo Valery, Wu Xiaodong, Zaidi Habib, Zeng Ziming, Minn Heikki, Comparative Study With New Accuracy Metrics for Target Volume Contouring in PET Image Guided Radiation Therapy, 10.1109/tmi.2012.2202322
  101. Warfield S.K., Zou K.H., Wells W.M., Simultaneous Truth and Performance Level Estimation (STAPLE): An Algorithm for the Validation of Image Segmentation, 10.1109/tmi.2004.828354
  102. McGurk Ross J., Bowsher James, Lee John A, Das Shiva K., Combining multiple FDG-PET radiotherapy target segmentation methods to reduce the effect of variable performance of individual segmentation methods : Consensus volumes for robust PET segmentation, 10.1118/1.4793721
  103. Pham Dzung L., Xu Chenyang, Prince Jerry L., Current Methods in Medical Image Segmentation, 10.1146/annurev.bioeng.2.1.315
  104. Bettinardi V., Castiglioni I., De Bernardi E., Gilardi M. C., PET quantification: strategies for partial volume correction, 10.1007/s40336-014-0066-y
  105. Lucy L. B., An iterative technique for the rectification of observed distributions, 10.1086/111605
  106. Richardson William Hadley, Bayesian-Based Iterative Method of Image Restoration*, 10.1364/josa.62.000055
  107. Kirov A S, Piao J Z, Schmidtlein C R, Partial volume effect correction in PET using regularized iterative deconvolution with variance control based on local topology, 10.1088/0031-9155/53/10/009
  108. Boussion N., Cheze Le Rest C., Hatt M., Visvikis D., Incorporation of wavelet-based denoising in iterative deconvolution for partial volume correction in whole-body PET imaging, 10.1007/s00259-009-1065-5
  109. Barbee David L, Flynn Ryan T, Holden James E, Nickles Robert J, Jeraj Robert, A method for partial volume correction of PET-imaged tumor heterogeneity using expectation maximization with a spatially varying point spread function, 10.1088/0031-9155/55/1/013
  110. Alessio A.M., Stearns C.W., Shan Tong, Ross S.G., Kohlmyer S., Ganin A., Kinahan P.E., Application and Evaluation of a Measured Spatially Variant System Model for PET Image Reconstruction, 10.1109/tmi.2010.2040188
  111. Jakoby Bjoern W., Bercier Yanic, Watson Charles C., Bendriem Bernard, Townsend David W., Performance Characteristics of a New LSO PET/CT Scanner With Extended Axial Field-of-View and PSF Reconstruction, 10.1109/tns.2009.2015764
  112. De Bernardi Elisabetta, Mazzoli Marco, Zito Felicia, Baselli Giuseppe, Resolution Recovery in PET During AWOSEM Reconstruction: A Performance Evaluation Study, 10.1109/tns.2007.905167
  113. Teo, J Nucl Med, 48, 802 (2007)
  114. Boussion, J Nucl Med, 49, 388P (2008)
  115. Chen, J Nucl Med, 40, 118 (1999)
  116. De Bernardi, Joint Segmentation and Quantification of Oncological Lesions in PET/CT: Preliminary Evaluation on a Zeolite Phantom, 3306 (2012)
  117. King A. D., Multimodality imaging of head and neck cancer, 10.1102/1470-7330.2007.9013
  118. Munley Michael T., Marks Lawrence B., Scarfone Christopher, Sibley Gregory S., Patz Edward F., Turkington Timothy G., Jaszczak Ronald J., Gilland David R., Anscher Mitchell S., Coleman R.Edward, Multimodality nuclear medicine imaging in three-dimensional radiation treatment planning for lung cancer: challenges and prospects, 10.1016/s0169-5002(99)00005-7
  119. Chen R., Parry J. J., Akers W. J., Berezin M. Y., El Naqa I. M., Achilefu S., Edwards W. B., Rogers B. E., Multimodality Imaging of Gene Transfer with a Receptor-Based Reporter Gene, 10.2967/jnumed.109.063586
  120. DeFeo Elita M., Wu Chin-Lee, McDougal W. Scott, Cheng Leo L., A decade in prostate cancer: from NMR to metabolomics, 10.1038/nrurol.2011.53
  121. Hsu, J Nucl Med, 48, 445 (2007)
  122. Smith Wendy L., Lewis Craig, Bauman Glenn, Rodrigues George, D’Souza David, Ash Robert, Ho Derek, Venkatesan Varagur, Downey Dónal, Fenster Aaron, Prostate volume contouring: A 3D analysis of segmentation using 3DTRUS, CT, and MR, 10.1016/j.ijrobp.2006.11.027
  123. Buijsen Jeroen, van den Bogaard Jørgen, van der Weide Hiska, Engelsman Stephanie, van Stiphout Ruud, Janssen Marco, Beets Geerard, Beets-Tan Regina, Lambin Philippe, Lammering Guido, FDG–PET–CT reduces the interobserver variability in rectal tumor delineation, 10.1016/j.radonc.2011.12.016
  124. van Baardwijk Angela, Bosmans Geert, Boersma Liesbeth, Buijsen Jeroen, Wanders Stofferinus, Hochstenbag Monique, van Suylen Robert-Jan, Dekker André, Dehing-Oberije Cary, Houben Ruud, Bentzen Søren M., van Kroonenburgh Marinus, Lambin Philippe, De Ruysscher Dirk, PET-CT–Based Auto-Contouring in Non–Small-Cell Lung Cancer Correlates With Pathology and Reduces Interobserver Variability in the Delineation of the Primary Tumor and Involved Nodal Volumes, 10.1016/j.ijrobp.2006.12.067
  125. Metwally Hussein, Courbon Frédéric, David Isabelle, Filleron Thomas, Blouet Aurélien, Rives Michel, Izar Françoise, Zerdoud Slimane, Plat Geneviève, Vial Julie, Robert Alain, Laprie Anne, Coregistration of Prechemotherapy PET-CT for Planning Pediatric Hodgkin's Disease Radiotherapy Significantly Diminishes Interobserver Variability of Clinical Target Volume Definition, 10.1016/j.ijrobp.2010.02.024
  126. Anderson, Jacobs J Radiat Oncol, 1, 006 (2014)
  127. Zheng, Oncology letters, 7, 1015 (2014)
  128. Sebbahi A., Herment A., de Cesare A., Mousseaux E., Multimodality cardiovascular image segmentation using a deformable contour model, 10.1016/s0895-6111(96)00070-5
  129. Zheng Jie, El Naqa Issam, Rowold Faith E., Pilgram Thomas K., Woodard Pamela K., Saffitz Jeffrey E., Tang Dalin, Quantitative assessment of coronary artery plaque vulnerability by high-resolution magnetic resonance imaging and computational biomechanics: A pilot study ex vivo, 10.1002/mrm.20724
  130. Naqa, Enterp Imaging Ther Radiol Manag, 18, 39 (2008)
  131. Yang, J Radiat Oncol Inform, 1, 1 (2009)
  132. Chan Tony F., Sandberg B.Yezrielev, Vese Luminita A., Active Contours without Edges for Vector-Valued Images, 10.1006/jvci.1999.0442
  133. Shah J., Curve evolution and segmentation functionals: application to color images, 10.1109/icip.1996.559533
  134. Cui Hui, Wang Xiuying, Zhou Jianlong, Eberl Stefan, Yin Yong, Feng Dagan, Fulham Michael, Topology polymorphism graph for lung tumor segmentation in PET-CT images, 10.1088/0031-9155/60/12/4893
  135. Werner-Wasik Maria, Nelson Arden D., Choi Walter, Arai Yoshio, Faulhaber Peter F., Kang Patrick, Almeida Fabio D., Xiao Ying, Ohri Nitin, Brockway Kristin D., Piper Jonathan W., Nelson Aaron S., What Is the Best Way to Contour Lung Tumors on PET Scans? Multiobserver Validation of a Gradient-Based Method Using a NSCLC Digital PET Phantom, 10.1016/j.ijrobp.2010.12.055
  136. Fogh S.E., Farach A., Intenzo C., Axelrod R., McCue P., Harper A., Nelson A., Werner-Wasik M., Pathologic Correlation of PET-CT Based Auto Contouring for Radiation Planning in Lung Cancer, 10.1016/j.ijrobp.2010.07.490
  137. Daisne Jean-François, Sibomana Mérence, Bol Anne, Doumont Thomas, Lonneux Max, Grégoire Vincent, Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms, 10.1016/s0167-8140(03)00270-6
  138. Sebastian Thomas B., Manjeshwar Ravindra M., Akhurst Timothy J., Miller James V., Objective PET Lesion Segmentation Using a Spherical Mean Shift Algorithm, Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006 (2006) ISBN:9783540447276 p.782-789, 10.1007/11866763_96
  139. Zaidi Habib, Abdoli Mehrsima, Fuentes Carolina Llina, El Naqa Issam M., Comparative methods for PET image segmentation in pharyngolaryngeal squamous cell carcinoma, 10.1007/s00259-011-2053-0
  140. Dewalle-Vignion Anne-Sophie, Betrouni Nacim, Lopes Renaud, Huglo Damien, Stute Simon, Vermandel Maximilien, A New Method for Volume Segmentation of PET Images, Based on Possibility Theory, 10.1109/tmi.2010.2083681
  141. Abdoli M., Dierckx R. A. J. O., Zaidi H., Contourlet-based active contour model for PET image segmentation : Active contour-based PET image segmentation, 10.1118/1.4816296
  142. Daisne Jean-François, Duprez Thierry, Weynand Birgit, Lonneux Max, Hamoir Marc, Reychler Hervé, Grégoire Vincent, Tumor Volume in Pharyngolaryngeal Squamous Cell Carcinoma: Comparison at CT, MR Imaging, and FDG PET and Validation with Surgical Specimen, 10.1148/radiol.2331030660
  143. Hatt M., Cheze-le Rest C., van Baardwijk A., Lambin P., Pradier O., Visvikis D., Impact of Tumor Size and Tracer Uptake Heterogeneity in 18F-FDG PET and CT Non-Small Cell Lung Cancer Tumor Delineation, 10.2967/jnumed.111.092767
  144. Hatt Mathieu, Maitre Amandine Le, Wallach Daphné, Fayad Hadi, Visvikis Dimitris, Comparison of different methods of incorporating respiratory motion for lung cancer tumor volume delineation on PET images: a simulation study, 10.1088/0031-9155/57/22/7409
  145. Berthon, Eur J Nucl Med Mol Imaging, 39, S385 (2013)
  146. Öllers Michel, Bosmans Geert, van Baardwijk Angela, Dekker Andre, Lambin Philippe, Teule Jaap, Thimister Willie, Rhamy Ali, De Ruysscher Dirk, The integration of PET-CT scans from different hospitals into radiotherapy treatment planning, 10.1016/j.radonc.2007.12.025
  147. Knäusl Barbara, Hirtl Albert, Dobrozemsky Georg, Bergmann Helmar, Kletter Kurt, Dudczak Robert, Georg Dietmar, PET based volume segmentation with emphasis on the iterative TrueX algorithm, 10.1016/j.zemedi.2010.12.003
  148. Schaefer A., Nestle U., Kremp S., Hellwig D., Grgic A., Buchholz H. G., Mischke W., Gromoll C., Dennert P., Plotkin M., Senftleben S., Thorwarth D., Tosch M., Wahl A., Wengenmair H., Rübe C., Kirsch C.-M., Multi-centre calibration of an adaptive thresholding method for PET-based delineation of tumour volumes in radiotherapy planning of lung cancer : , 10.3413/nukmed-0452-11-12
  149. Mackie TR Gregoire V International Commission on Radiation Units and Measurements (ICRU) Report 83. Prescribing, Recording, and Reporting Photon-Beam Intensity-Modulated Radiation Therapy (IMRT) 2010
  150. Fischer Barbara M., Olsen Minna W. B., Ley Carsten D., Klausen Thomas L., Mortensen Jann, Højgaard Liselotte, Kristjansen Paul E. G., How few cancer cells can be detected by positron emission tomography? A frequent question addressed by an in vitro study, 10.1007/s00259-005-0038-6
  151. Berthon Beatrice, Spezi Emiliano, Galavis Paulina, Shepherd Tony, Apte Aditya, Hatt Mathieu, Fayad Hadi, De Bernardi Elisabetta, Soffientini Chiara D., Ross Schmidtlein C., El Naqa Issam, Jeraj Robert, Lu Wei, Das Shiva, Zaidi Habib, Mawlawi Osama R., Visvikis Dimitris, Lee John A., Kirov Assen S., Toward a standard for the evaluation of PET-Auto-Segmentation methods following the recommendations of AAPM task group No. 211: Requirements and implementation, 10.1002/mp.12312
  152. Janssen Marco H.M., Aerts Hugo J.W.L., Öllers Michel C., Bosmans Geert, Lee John A., Buijsen Jeroen, De Ruysscher Dirk, Lambin Philippe, Lammering Guido, Dekker Andre L.A.J., Tumor Delineation Based on Time–Activity Curve Differences Assessed With Dynamic Fluorodeoxyglucose Positron Emission Tomography–Computed Tomography in Rectal Cancer Patients, 10.1016/j.ijrobp.2008.04.019
  153. Shepherd T., Owenius R., Gaussian Process Models of Dynamic PET for Functional Volume Definition in Radiation Oncology, 10.1109/tmi.2012.2193896
  154. Lelandais Benoît, Ruan Su, Denœux Thierry, Vera Pierre, Gardin Isabelle, Fusion of multi-tracer PET images for dose painting, 10.1016/
  155. NEMA NU 2-2001, Performance Measurements of Positron Emission Tomographs (2001)
  156. Hunt Dylan Christopher, Easton Harry, Caldwell Curtis B., Design and construction of a quality control phantom for SPECT and PET imaging : PET and SPECT phantom construction, 10.1118/1.3250855
  157. DiFilippo Frank P., Price James P., Kelsch Daniel N., Muzic Raymond F., Porous phantoms for PET and SPECT performance evaluation and quality assurance, 10.1118/1.1711416
  158. Zito Felicia, De Bernardi Elisabetta, Soffientini Chiara, Canzi Cristina, Casati Rosangela, Gerundini Paolo, Baselli Giuseppe, The use of zeolites to generate PET phantoms for the validation of quantification strategies in oncology : Zeolites to simulate lesions for PET, 10.1118/1.4736812
  159. Larsson Stig A., Jonsson Cathrine, Pagani Marco, Johansson Lars, Jacobsson Hans, A novel phantom design for emission tomography enabling scatter- and attenuation-”free" single-photon emission tomography imaging, 10.1007/s002590050018
  160. El-Ali H, Ljungberg M, Strand S-E, Palmer J, Malmgren L, Nilsson J, Calibration of a Radioactive Ink-Based Stack Phantom and Its Applications in Nuclear Medicine, 10.1089/108497803765036364
  161. Miller, J Nucl Med, 49, 65P (2008)
  162. Kirov A S, Sculley E, Schmidtlein C R, Siman W, Kandel B, Zdenek R, Schwar R, Ayzenberg G, Yorke E, Schöder H, Humm J L, Amols H I, SU-D-110-03: A New Phantom Allowing Realistic Non-Uniform Activity Distributions for PET Quantification, 10.1118/1.3611539
  163. Zaidi Habib, Xu Xie George, Computational Anthropomorphic Models of the Human Anatomy: The Path to Realistic Monte Carlo Modeling in Radiological Sciences, 10.1146/annurev.bioeng.9.060906.151934
  164. Wang Wenli, Georgi Jens-Christoph, Nehmeh Sadek A, Narayanan Manoj, Paulus Timo, Bal Matthieu, O'Donoghue Joseph, Zanzonico Pat B, Schmidtlein C Ross, Lee Nancy Y, Humm John L, Evaluation of a compartmental model for estimating tumor hypoxia via FMISO dynamic PET imaging, 10.1088/0031-9155/54/10/008
  165. Berthon Beatrice, Häggström Ida, Apte Aditya, Beattie Bradley J., Kirov Assen S., Humm John L., Marshall Christopher, Spezi Emiliano, Larsson Anne, Schmidtlein C. Ross, PETSTEP: Generation of synthetic PET lesions for fast evaluation of segmentation methods, 10.1016/j.ejmp.2015.07.139
  166. Shepp L. A., Vardi Y., Maximum Likelihood Reconstruction for Emission Tomography, 10.1109/tmi.1982.4307558
  167. Asma E Ahn S Ross SG Chen A Manjeshwar RM Accurate and consistent lesion quantitation with clinically acceptable penalized likelihood images 2012
  168. Segars W. P., Sturgeon G., Mendonca S., Grimes Jason, Tsui B. M. W., 4D XCAT phantom for multimodality imaging research : 4D XCAT phantom for multimodality imaging research, 10.1118/1.3480985
  169. Zubal I. George, Harrell Charles R., Smith Eileen O., Rattner Zachary, Gindi Gene, Hoffer Paul B., Computerized three-dimensional segmented human anatomy, 10.1118/1.597290
  170. McLennan A Reilhac A Brady M SORTEO: Monte Carlo-based simulator with list-mode capabilities 2009 3751 3754
  171. Jan S, Benoit D, Becheva E, Carlier T, Cassol F, Descourt P, Frisson T, Grevillot L, Guigues L, Maigne L, Morel C, Perrot Y, Rehfeld N, Sarrut D, Schaart D R, Stute S, Pietrzyk U, Visvikis D, Zahra N, Buvat I, GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy, 10.1088/0031-9155/56/4/001
  172. Jan S, Santin G, Strul D, Staelens S, Assié K, Autret D, Avner S, Barbier R, Bardiès M, Bloomfield P M, Brasse D, Breton V, Bruyndonckx P, Buvat I, Chatziioannou A F, Choi Y, Chung Y H, Comtat C, Donnarieix D, Ferrer L, Glick S J, Groiselle C J, Guez D, Honore P-F, Kerhoas-Cavata S, Kirov A S, Kohli V, Koole M, Krieguer M, Laan D J van der, Lamare F, Largeron G, Lartizien C, Lazaro D, Maas M C, Maigne L, Mayet F, Melot F, Merheb C, Pennacchio E, Perez J, Pietrzyk U, Rannou F R, Rey M, Schaart D R, Schmidtlein C R, Simon L, Song T Y, Vieira J-M, Visvikis D, Walle R Van de, Wieërs E, Morel C, GATE: a simulation toolkit for PET and SPECT, 10.1088/0031-9155/49/19/007
  173. Harrison, J Nucl Med, 49, 410 (2008)
  174. Lamare F, Turzo A, Bizais Y, Rest C Cheze Le, Visvikis D, Validation of a Monte Carlo simulation of the Philips Allegro/GEMINI PET systems using GATE, 10.1088/0031-9155/51/4/013
  175. Bayne Michael, Hicks Rodney J., Everitt Sarah, Fimmell Natalie, Ball David, Reynolds John, Lau Eddie, Pitman Alex, Ware Robert, MacManus Michael, Reproducibility of “Intelligent” Contouring of Gross Tumor Volume in Non–Small-Cell Lung Cancer on PET/CT Images Using a Standardized Visual Method, 10.1016/j.ijrobp.2009.06.032
  176. Kirov Assen S., Fanchon Louise M., Pathology-validated PET image data sets and their role in PET segmentation, 10.1007/s40336-014-0068-9
  177. Fogh, J Thorac Oncol, 4, S528 (2009)
  178. van Loon Judith, Siedschlag Christian, Stroom Joep, Blauwgeers Hans, van Suylen Robert-Jan, Knegjens Joost, Rossi Maddalena, van Baardwijk Angela, Boersma Liesbeth, Klomp Houke, Vogel Wouter, Burgers Sjaak, Gilhuijs Kenneth, Microscopic Disease Extension in Three Dimensions for Non–Small-Cell Lung Cancer: Development of a Prediction Model Using Pathology-Validated Positron Emission Tomography and Computed Tomography Features, 10.1016/j.ijrobp.2010.09.001
  179. Axente Marian, He Jun, Bass Christopher P., Sundaresan Gobalakrishnan, Zweit Jamal, Williamson Jeffrey F., Pugachev Andrei, An alternative approach to histopathological validation of PET imaging for radiation therapy image-guidance: A proof of concept, 10.1016/j.radonc.2013.12.017
  180. Fanchon L. M., Dogan S., Moreira A. L., Carlin S. A., Schmidtlein C. R., Yorke E., Apte A. P., Burger I. A., Durack J. C., Erinjeri J. P., Maybody M., Schoder H., Siegelbaum R. H., Sofocleous C. T., Deasy J. O., Solomon S. B., Humm J. L., Kirov A. S., Feasibility of In Situ, High-Resolution Correlation of Tracer Uptake with Histopathology by Quantitative Autoradiography of Biopsy Specimens Obtained Under 18F-FDG PET/CT Guidance, 10.2967/jnumed.114.148668
  181. Dubuisson M-P Jain AK A modified Hausdorff distance for object matching 1994 1 566 568
  182. Kim Haksoo, Monroe James I., Lo Simon, Yao Min, Harari Paul M., Machtay Mitchell, Sohn Jason W., Quantitative evaluation of image segmentation incorporating medical consideration functions : Quantitative evaluation of image segmentation, 10.1118/1.4921067
  183. Grégoire Vincent, Jeraj Robert, Lee John Aldo, O’Sullivan Brian, Radiotherapy for head and neck tumours in 2012 and beyond: conformal, tailored, and adaptive?, 10.1016/s1470-2045(12)70237-1
  184. Skretting Arne, Evensen Jan F., Løndalen Ayca M., Bogsrud Trond V., Glomset Otto K., Eilertsen Karsten, A gel tumour phantom for assessment of the accuracy of manual and automatic delineation of gross tumour volume from FDG-PET/CT, 10.3109/0284186x.2012.718095
  185. David S, Visvikis D, Roux C, Hatt M, Multi-observation PET image analysis for patient follow-up quantitation and therapy assessment, 10.1088/0031-9155/56/18/001
  186. David S., Visvikis D., Quellec G., Le Rest Catherine Cheze, Fernandez P., Allard M., Roux C., Hatt M., Image Change Detection Using Paradoxical Theory for Patient Follow-Up Quantitation and Therapy Assessment, 10.1109/tmi.2012.2199511
  187. Lelandais, Med Image Comput Comput Assist Interv -MICCAI, 15, 545 (2012)
  188. Frings V., de Langen A. J., Smit E. F., van Velden F. H. P., Hoekstra O. S., van Tinteren H., Boellaard R., Repeatability of Metabolically Active Volume Measurements with 18F-FDG and 18F-FLT PET in Non-Small Cell Lung Cancer, 10.2967/jnumed.110.077255
  189. Hatt M., Cheze-Le Rest C., Aboagye E. O., Kenny L. M., Rosso L., Turkheimer F. E., Albarghach N. M., Metges J.-P., Pradier O., Visvikis D., Reproducibility of 18F-FDG and 3'-Deoxy-3'-18F-Fluorothymidine PET Tumor Volume Measurements, 10.2967/jnumed.110.078501
  190. Boellaard Ronald, Delgado-Bolton Roberto, Oyen Wim J. G., Giammarile Francesco, Tatsch Klaus, Eschner Wolfgang, Verzijlbergen Fred J., Barrington Sally F., Pike Lucy C., Weber Wolfgang A., Stroobants Sigrid, Delbeke Dominique, Donohoe Kevin J., Holbrook Scott, Graham Michael M., Testanera Giorgio, Hoekstra Otto S., Zijlstra Josee, Visser Eric, Hoekstra Corneline J., Pruim Jan, Willemsen Antoon, Arends Bertjan, Kotzerke Jörg, Bockisch Andreas, Beyer Thomas, Chiti Arturo, Krause Bernd J., FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0, 10.1007/s00259-014-2961-x
  191. Wahl R. L., Jacene H., Kasamon Y., Lodge M. A., From RECIST to PERCIST: Evolving Considerations for PET Response Criteria in Solid Tumors, 10.2967/jnumed.108.057307
  192. MacFarlane, J Nucl Med Technol, 34, 18 (2006)
  193. Barrett Harrison H., Objective assessment of image quality: effects of quantum noise and object variability, 10.1364/josaa.7.001266
  194. Barrett Harrison H., Abbey Craig K., Clarkson Eric, Objective assessment of image quality III ROC metrics, ideal observers, and likelihood-generating functions, 10.1364/josaa.15.001520
  195. Barrett Harrison H., Denny J. L., Wagner Robert F., Myers Kyle J., Objective assessment of image quality II Fisher information, Fourier crosstalk, and figures of merit for task performance, 10.1364/josaa.12.000834
  196. Barrett Harrison H, Kupinski Matthew A, Müeller Stefan, Halpern Howard J, Morris John C, Dwyer Roisin, Objective assessment of image quality VI: imaging in radiation therapy, 10.1088/0031-9155/58/22/8197
  197. Fessler J.A., Rogers W.L., Spatial resolution properties of penalized-likelihood image reconstruction: space-invariant tomographs, 10.1109/83.535846
  198. Barrett H H, Wilson D W, Tsui B M W, Noise properties of the EM algorithm. I. Theory, 10.1088/0031-9155/39/5/004
  199. Yu D.F., Fessler J.A., Edge-preserving tomographic reconstruction with nonlocal regularization, 10.1109/42.993134
  200. Fessler J.A., Ficaro E.P., Clinthorne N.H., Lange K., Grouped-coordinate ascent algorithms for penalized-likelihood transmission image reconstruction, 10.1109/42.563662
  201. Krol Andrzej, Li Si, Shen Lixin, Xu Yuesheng, Preconditioned alternating projection algorithms for maximuma posterioriECT reconstruction, 10.1088/0266-5611/28/11/115005
  202. Rapisarda Eugenio, Presotto Luca, De Bernardi Elisabetta, Gilardi Maria Carla, Bettinardi Valentino, Optimized Bayes variational regularization prior for 3D PET images, 10.1016/j.compmedimag.2014.05.004
  203. Ahn Sangtae, Ross Steven G, Asma Evren, Miao Jun, Jin Xiao, Cheng Lishui, Wollenweber Scott D, Manjeshwar Ravindra M, Quantitative comparison of OSEM and penalized likelihood image reconstruction using relative difference penalties for clinical PET, 10.1088/0031-9155/60/15/5733
  204. Arens Anne I. J., Troost Esther G. C., Hoeben Bianca A. W., Grootjans Willem, Lee John A., Grégoire Vincent, Hatt Mathieu, Visvikis Dimitris, Bussink Johan, Oyen Wim J. G., Kaanders Johannes H. A. M., Visser Eric P., Semiautomatic methods for segmentation of the proliferative tumour volume on sequential FLT PET/CT images in head and neck carcinomas and their relation to clinical outcome, 10.1007/s00259-013-2651-0
  205. Henriques de Figueiredo B., Zacharatou C., Galland-Girodet S., Benech J., De Clermont-Gallerande H., Lamare F., Hatt M., Digue L., De Mones del Pujol E., Fernandez P., Hypoxia imaging with [18F]-FMISO-PET for guided dose escalation with intensity-modulated radiotherapy in head-and-neck cancers, 10.1007/s00066-014-0752-8
  206. Low Daniel A., Nystrom Michelle, Kalinin Eugene, Parikh Parag, Dempsey James F., Bradley Jeffrey D., Mutic Sasa, Wahab Sasha H., Islam Tareque, Christensen Gary, Politte David G., Whiting Bruce R., A method for the reconstruction of four-dimensional synchronized CT scans acquired during free breathing, 10.1118/1.1576230
  207. Wink Nicole M., Panknin Christoph, Solberg Timothy D., Phase versus amplitude sorting of 4D-CT data, 10.1120/jacmp.v7i1.2198
  208. Olsen Jeffrey R., Lu Wei, Hubenschmidt James P., Nystrom Michelle M., Klahr Paul, Bradley Jeffrey D., Low Daniel A., Parikh Parag J., Effect of Novel Amplitude/Phase Binning Algorithm on Commercial Four-Dimensional Computed Tomography Quality, 10.1016/j.ijrobp.2007.09.013
  209. Nehmeh, J Nucl Med, 44, 1644 (2003)
  210. Qiao Feng, Pan Tinsu, Clark John W, Mawlawi Osama R, A motion-incorporated reconstruction method for gated PET studies, 10.1088/0031-9155/51/15/012
  211. Chi Pai-Chun Melinda, Mawlawi Osama, Nehmeh Sadek A., Erdi Yusuf E., Balter Peter A., Luo Dershan, Mohan Radhe, Pan Tinsu, Design of respiration averaged CT for attenuation correction of the PET data from PET/CT : Design of respiration averaged CT, 10.1118/1.2733810
  212. Berlinger Kajetan, Sauer Otto, Vences Lucia, Roth Michael, A simple method for labeling CT images with respiratory states : Labeling CT images with respiratory states, 10.1118/1.2229420
  213. Qiao Feng, Clark John W., Pan Tinsu, Mawlawi Osama, Joint model of motion and anatomy for PET image reconstruction : Joint motion/anatomy model for PET image reconstruction, 10.1118/1.2804721
  214. Dawood Mohammad, Büther Florian, Lang Norbert, Schober Otmar, Schäfers Klaus P, Respiratory gating in positron emission tomography: A quantitative comparison of different gating schemes : Respiratory gating schemes in PET: A quantitative comparison, 10.1118/1.2748104
  215. Bruyant P. P., Cheze Le Rest C., Turzo A., Jarritt P., Carson K., Visvikis D., A method for synchronizing an external respiratory signal with a list-mode PET acquisition : Synchronizing external respiratory signal with PET acquisition, 10.1118/1.2791036
  216. Nehmeh, J Nucl Med, 48, 22 (2007)
  217. Sureshbabu, J Nucl Med Technol, 33, 156 (2005)
  218. Chang G., Chang T., Pan T., Clark J. W., Mawlawi O. R., Implementation of an Automated Respiratory Amplitude Gating Technique for PET/CT: Clinical Evaluation, 10.2967/jnumed.109.068759
  219. Büther Florian, Ernst Iris, Dawood Mohammad, Kraxner Peter, Schäfers Michael, Schober Otmar, Schäfers Klaus P., Detection of respiratory tumour motion using intrinsic list mode-driven gating in positron emission tomography, 10.1007/s00259-010-1533-y
  220. Schleyer Paul J, O'Doherty Michael J, Barrington Sally F, Marsden Paul K, Retrospective data-driven respiratory gating for PET/CT, 10.1088/0031-9155/54/7/005
  221. Kesner Adam Leon, Kuntner Claudia, A new fast and fully automated software based algorithm for extracting respiratory signal from raw PET data and its comparison to other methods : Automated data based respiratory signal acquisition, 10.1118/1.3483784
  222. Naqa Issam El, Low Daniel A., Bradley Jeffrey D., Vicic Milos, Deasy Joseph O., Deblurring of breathing motion artifacts in thoracic PET images by deconvolution methods : Deblurring of breathing motion artifacts in thoracic PET, 10.1118/1.2336500
  223. Yalavarthy PK Low D Noel C Current role of PET in oncology: Potentials and challenges in the management of non-small cell lung cancer 2008
  224. Büther Florian, Vehren Thomas, Schäfers Klaus P., Schäfers Michael, Impact of Data-driven Respiratory Gating in Clinical PET, 10.1148/radiol.2016152067
  225. Kesner Adam Leon, Chung Jonathan Hero, Lind Kimberly Erin, Kwak Jennifer Jihyang, Lynch David, Burckhardt Darrell, Koo Phillip Jahhyung, Validation of Software Gating: A Practical Technology for Respiratory Motion Correction in PET, 10.1148/radiol.2016152105
  226. Kesner Adam L, Schleyer Paul J, Büther Florian, Walter Martin A, Schäfers Klaus P, Koo Phillip J, On transcending the impasse of respiratory motion correction applications in routine clinical imaging – a consideration of a fully automated data driven motion control framework, 10.1186/2197-7364-1-8
  227. Aristophanous Michalis, Yap Jeffrey T., Killoran Joseph H., Chen Aileen B., Berbeco Ross I., Four-Dimensional Positron Emission Tomography: Implications for Dose Painting of High-Uptake Regions, 10.1016/j.ijrobp.2010.08.028
  228. Aristophanous Michalis, Berbeco Ross I., Killoran Joseph H., Yap Jeffrey T., Sher David J., Allen Aaron M., Larson Elysia, Chen Aileen B., Clinical Utility of 4D FDG-PET/CT Scans in Radiation Treatment Planning, 10.1016/j.ijrobp.2010.12.060
  229. Lamb J. M., Robinson C., Bradley J., Laforest R., Dehdashti F., White B. M., Wuenschel S., Low D. A., Generating lung tumor internal target volumes from 4D-PET maximum intensity projections : Internal target volumes from 4D-PET maximum intensity projections, 10.1118/1.3633896
  230. Guerra Luca, Meregalli Sofia, Zorz Alessandra, Niespolo Rita, De Ponti Elena, Elisei Federica, Morzenti Sabrina, Brenna Sarah, Crespi Andrea, Gardani Gianstefano, Messa Cristina, Comparative evaluation of CT-based and respiratory-gated PET/CT-based planning target volume (PTV) in the definition of radiation treatment planning in lung cancer: preliminary results, 10.1007/s00259-013-2594-5
  231. Chirindel Alin, Adebahr Sonja, Schuster Daniel, Schimek-Jasch Tanja, Schanne Daniel H., Nemer Ursula, Mix Michael, Meyer Philipp, Grosu Anca-Ligia, Brunner Thomas, Nestle Ursula, Impact of 4D-18FDG-PET/CT imaging on target volume delineation in SBRT patients with central versus peripheral lung tumors. Multi-reader comparative study, 10.1016/j.radonc.2015.05.019
  232. Pierce Larry A., Elston Brian F., Clunie David A., Nelson Dennis, Kinahan Paul E., A Digital Reference Object to Analyze Calculation Accuracy of PET Standardized Uptake Value, 10.1148/radiol.2015141262
  233. Withofs Nadia, Bernard Claire, van der Rest Catherine, Martinive Philippe, Hatt Mathieu, Jodogne Sebastien, Visvikis Dimitris, Lee John A., Coucke Philippe A., Hustinx Roland, FDG PET/CT for rectal carcinoma radiotherapy treatment planning: comparison of functional volume delineation algorithms and clinical challenges, 10.1120/jacmp.v15i5.4696
  234. Shepherd, Eur J Nucl Med Mol Imaging, 39, S264 (2012)
  235. Berthon B., Spezi E., Schmidtlein C.R., Apte A., Galavis P., Zaidi H., De Bernardi E., Lee J.A., Kirov A., I.NC. Other contributors, PD-0418: Development of a software platform for evaluating automatic PET segmentation methods, 10.1016/s0167-8140(15)30523-5
  236. Mamede Marcelo, Abreu-e-Lima Paula, Oliva Maria Raquel, Nos?? V??nia, Mamon Harvey, Gerbaudo Victor H., FDG-PET/CT Tumor Segmentation-Derived Indices of Metabolic Activity to Assess Response to Neoadjuvant Therapy and Progression-Free Survival in Esophageal Cancer : Correlation With Histopathology Results, 10.1097/coc.0b013e31803993f8
  237. Necib H., Garcia C., Wagner A., Vanderlinden B., Emonts P., Hendlisz A., Flamen P., Buvat I., Detection and Characterization of Tumor Changes in 18F-FDG PET Patient Monitoring Using Parametric Imaging, 10.2967/jnumed.110.080150
  238. Mi Hongmei, Petitjean Caroline, Vera Pierre, Ruan Su, Joint tumor growth prediction and tumor segmentation on therapeutic follow-up PET images, 10.1016/
  239. Mi Hongmei, Petitjean Caroline, Dubray Bernard, Vera Pierre, Ruan Su, Prediction of Lung Tumor Evolution During Radiotherapy in Individual Patients With PET, 10.1109/tmi.2014.2301892
  240. Sampedro Frederic, Escalera Sergio, Domenech Anna, Carrio Ignasi, A computational framework for cancer response assessment based on oncological PET-CT scans, 10.1016/j.compbiomed.2014.10.014
  241. Obara Piotr, Liu Haiping, Wroblewski Kristen, Zhang Chen-Peng, Hou Peng, Jiang Yulei, Chen Ping, Pu Yonglin, Quantification of metabolic tumor activity and burden in patients with non-small-cell lung cancer : Is manual adjustment of semiautomatic gradient-based measurements necessary?, 10.1097/mnm.0000000000000317
  242. Beichel Reinhard R., Van Tol Markus, Ulrich Ethan J., Bauer Christian, Chang Tangel, Plichta Kristin A., Smith Brian J., Sunderland John J., Graham Michael M., Sonka Milan, Buatti John M., Semiautomated segmentation of head and neck cancers in 18F-FDG PET scans: A just-enough-interaction approach : Semiautomated segmentation of head and neck cancers, 10.1118/1.4948679
  243. Tylski P Bonniaud G Decenciere E 18F-FDG PET images segmentation using morphological watershed: a phantom study 2006 IEEE Nuclear Science Symposium Conference 2063 2067
  244. Sharif, Advances in Fuzzy Systems, 10 (2012)
  245. De Bernardi E., Fiorani Gallotta F., Gianoli C., Zito F., Gerundini P., Baselli G., ML Segmentation Strategies for Object Interference Compensation in FDG-PET Lesion Quantification : , 10.3414/me09-02-0040
  246. Onoma D.P., Ruan S., Thureau S., Nkhali L., Modzelewski R., Monnehan G.A., Vera P., Gardin I., Segmentation of heterogeneous or small FDG PET positive tissue based on a 3D-locally adaptive random walk algorithm, 10.1016/j.compmedimag.2014.09.007
  247. Mu Wei, Chen Zhe, Shen Wei, Yang Feng, Liang Ying, Dai Ruwei, Wu Ning, Tian Jie, A Segmentation Algorithm for Quantitative Analysis of Heterogeneous Tumors of the Cervix With 18 F-FDG PET/CT, 10.1109/tbme.2015.2433397
  248. Lapuyade-Lahorgue Jérôme, Visvikis Dimitris, Pradier Olivier, Cheze Le Rest Catherine, Hatt Mathieu, SPEQTACLE: An automated generalized fuzzy C-means algorithm for tumor delineation in PET : PET segmentation using generalized fuzzy C-means, 10.1118/1.4929561
  249. Devic Slobodan, Mohammed Huriyyah, Tomic Nada, Aldelaijan Saad, De Blois François, Seuntjens Jan, Lehnert Shirley, Faria Sergio, FDG-PET-based differential uptake volume histograms: a possible approach towards definition of biological target volumes, 10.1259/bjr.20150388
  250. Schinagl Dominic A.X., Vogel Wouter V., Hoffmann Aswin L., van Dalen Jorn A., Oyen Wim J., Kaanders Johannes H.A.M., Comparison of Five Segmentation Tools for 18F-Fluoro-Deoxy-Glucose–Positron Emission Tomography–Based Target Volume Definition in Head and Neck Cancer, 10.1016/j.ijrobp.2007.07.2333
  251. Greco Carlo, Nehmeh Sadek A., Schöder Heiko, Gönen Mithat, Raphael Barbara, Stambuk Hilda E., Humm John L., Larson Steven M., Lee Nancy Y., Evaluation of Different Methods of 18F-FDG-PET Target Volume Delineation in the Radiotherapy of Head and Neck Cancer : , 10.1097/coc.0b013e318168ef82
  252. Vees Hansjörg, Senthamizhchelvan Srinivasan, Miralbell Raymond, Weber Damien C., Ratib Osman, Zaidi Habib, Assessment of various strategies for 18F-FET PET-guided delineation of target volumes in high-grade glioma patients, 10.1007/s00259-008-0943-6
  253. Belhassen, J Nucl Med, 50, 27P (2009)
  254. Dewalle-Vignion Anne-Sophie, Yeni Nathanaëlle, Petyt Grégory, Verscheure Leslie, Huglo Damien, Béron Amandine, Adib Salim, Lion Georges, Vermandel Maximilien, Evaluation of PET volume segmentation methods : comparisons with expert manual delineations, 10.1097/mnm.0b013e32834d736f
  255. Lacout Alexis, Marcy Pierre-Yves, Giron Jacques, Thariat Juliette, Gradient-PET Based Delineation May Be Improved With Combined Post Contrast High Resolution CT Scan: In Regard to Werner-Wasik M et al. (Int J Radiat Oncol Biol Phys 2011 Apr 28), 10.1016/j.ijrobp.2011.06.2005
  256. Schinagl Dominic A. X., Span Paul N., van den Hoogen Frank J. A., Merkx Matthias A. W., Slootweg Piet J., Oyen Wim J. G., Kaanders Johannes H. A. M., Pathology-based validation of FDG PET segmentation tools for volume assessment of lymph node metastases from head and neck cancer, 10.1007/s00259-013-2513-9
  257. Drever Laura, Robinson Don M., McEwan Alexander, Roa Wilson, A local contrast based approach to threshold segmentation for PET target volume delineation : Contrast threshold segmentation for PET target volume delineation, 10.1118/1.2198308
  258. Vauclin S, Doyeux K, Hapdey S, Edet-Sanson A, Vera P, Gardin I, Development of a generic thresholding algorithm for the delineation of18FDG-PET-positive tissue: application to the comparison of three thresholding models, 10.1088/0031-9155/54/22/010
  259. Burger Irene A., Vargas Hebert Alberto, Apte Aditya, Beattie Bradley J., Humm John L., Gonen Mithat, Larson Steven M., Ross Schmidtlein C., PET quantification with a histogram derived total activity metric: Superior quantitative consistency compared to total lesion glycolysis with absolute or relative SUV thresholds in phantoms and lung cancer patients, 10.1016/j.nucmedbio.2014.02.006
  260. Li Guang, Schmidtlein C. Ross, Burger Irene A., Ridge Carole A., Solomon Stephen B., Humm John L., Assessing and accounting for the impact of respiratory motion on FDG uptake and viable volume for liver lesions in free-breathing PET using respiration-suspended PET images as reference : Assessing and accounting for motion in liver PET, 10.1118/1.4892602
  261. Kong F Machtay M Bradley J Ten Haken R Xiao Y Matuszak M RTOG 1106/ACRIN 6697: Randomized phase II trial of individualized adaptive radiotherapy using during-treatment FDG-PET/CT and modern technology in locally advanced non-small cell lung cancer (NSCLC) 2012
  262. Kong Feng-Ming Spring, Frey Kirk A., Quint Leslie E., Haken Randall K. Ten, Hayman James A., Kessler Marc, Chetty Indrin J., Normolle Daniel, Eisbruch Avraham, Lawrence Theodore S., A Pilot Study of [18F]Fluorodeoxyglucose Positron Emission Tomography Scans During and After Radiation-Based Therapy in Patients With Non–Small-Cell Lung Cancer, 10.1200/jco.2006.10.3747
  263. Drever Laura, Roa Wilson, McEwan Alexander, Robinson Don, Iterative threshold segmentation for PET target volume delineation : Iterative threshold segmentation for PET, 10.1118/1.2712043
  264. Krak Nanda C., Boellaard R., Hoekstra Otto S., Twisk Jos W. R., Hoekstra Corneline J., Lammertsma Adriaan A., Effects of ROI definition and reconstruction method on quantitative outcome and applicability in a response monitoring trial, 10.1007/s00259-004-1566-1
  265. Burger Irene A., Vargas Hebert A., Beattie Brad J., Goldman Debra A., Zheng Junting, Larson Steven M., Humm John L., Schmidtlein Charles R., How to assess background activity : introducing a histogram-based analysis as a first step for accurate one-step PET quantification, 10.1097/mnm.0000000000000045
  266. Vanderhoek M., Perlman S. B., Jeraj R., Impact of the Definition of Peak Standardized Uptake Value on Quantification of Treatment Response, 10.2967/jnumed.111.093443
  267. Miller M Hutchins G 3D Anatomically accurate phantoms for PET and SPECT imaging 2007 49 4252 4256
  268. Berthon B, Marshall C, Holmes R, Spezi E, A novel phantom technique for evaluating the performance of PET auto-segmentation methods in delineating heterogeneous and irregular lesions, 10.1186/s40658-015-0116-1
  269. Le Maitre Amandine, Segars William Paul, Marache Simon, Reilhac Anthonin, Hatt Mathieu, Tomei Sandrine, Lartizien Carole, Visvikis Dimitris, Incorporating Patient-Specific Variability in the Simulation of Realistic Whole-Body $^{18}{\hbox{F-FDG}}$ Distributions for Oncology Applications, 10.1109/jproc.2009.2027925
  270. Papadimitroulas Panagiotis, Loudos George, Le Maitre Amandine, Hatt Mathieu, Tixier Florent, Efthimiou Nikos, Nikiforidis George C., Visvikis Dimitris, Kagadis George C., Investigation of realistic PET simulations incorporating tumor patientˈs specificity using anthropomorphic models: Creation of an oncology database : Oncology database of anthropomorphic models, 10.1118/1.4826162
  271. Munkres, Topology (2000)
  272. Aspert N., Santa-Cruz D., Ebrahimi T., MESH: measuring errors between surfaces using the Hausdorff distance, 10.1109/icme.2002.1035879
  273. Sharif, Int J Biomed Imaging, 11 (2010)
Bibliographic reference Hatt, Mathieu ; Lee, John Aldo ; Schmidtlein, Charles R ; Naqa, Issam El ; Caldwell, Curtis ; et. al. Classification and evaluation strategies of auto-segmentation approaches for PET: Report of AAPM task group No. 211.. In: Medical physics, Vol. 44, no. 6, p. e1-e42 (2017)
Permanent URL