Malcicka, Miriama
[VU University Amsterdam, Department of Ecological Sciences, Section Animal Ecology]
Bezemer, T. Martijn
[Netherlands Institute of Ecology, Department of Terrestrial Ecology, Droevendaalsesteeg 10, 6700 EH ́ Wageningen]
Visser, Bertanne
[Institut de Recherche sur la Biologie de l’Insecte (IRBI) UMR 7261 CNRS/Universite François-Rabelais, Ecology of Multitrophic Systems Research Team, Functional Ecology group, Tours, France]
Bloemberg, Mark
[Netherlands Institute of Ecology, Department of Terrestrial Ecology, Droevendaalsesteeg 10, 6700 EH ́ Wageningen]
Snart, Charles J. P.
[University of Nottingham, School of Pharmacy, Nottingham, U.K]
Hardy, Ian C. W.
[University of Nottingham, School of Biosciences, Loughborough, U.K.]
Harvey, Jeffrey A.
[VU University Amsterdam, Department of Ecological Sciences, Section Animal Ecology]
Many animals avoid attack from predators through toxicity or the emission of repellent chemicals. Defensive mimicry has evolved in many species to deceive shared predators, for instance through colouration and other morphological adaptations, but mimicry hardly ever seems to involve multi-trait similarities. Here we report on a wingless parasitoid wasp that exhibits a full spectrum of traits mimicing ants and affording protection against ground-dwelling predators (wolf spiders). In body size, morphology and movement Gelis agilis (Ichneumonidae) is highly similar to the black garden ant (Lasius niger) that shares the same habitat. When threatened, G. agilis also emits a volatile chemical that is similar to an ant-produced chemical that repels spiders. In bioassays with L. niger, G. agilis, G. areator, Cotesia glomerata and Drosophila melanogaster, ants and G. agilis were virtually immune to spider attack, in contrast the other species were not. Volatile characterisation with gas chromatography-mass spectrometry identified G. agilis emissions as 6-methyl-5-hepten-2-one, a known insect defence semiochemical that acts as an alarm pheromone in ants. We argue that multi-trait mimicry, as observed in G. agilis, might be much more common among animals than currently realized.
Müller, F. Ituna and Thyridia: a remarkable case of mimicry in butterflies. Trans. Entomol. Soc. Lond 8, 20–29 (1897).
Howarth Brigitte, Edmunds Malcolm, Gilbert Francis, DOES THE ABUNDANCE OF HOVERFLY (SYRPHIDAE) MIMICS DEPEND ON THE NUMBERS OF THEIR HYMENOPTERAN MODELS?, 10.1111/j.0014-3820.2004.tb01652.x
Bates Henry Walter, XXXII. Contributions to an Insect Fauna of the Amazon Valley. Lepidoptera: Heliconidae., 10.1111/j.1096-3642.1860.tb00146.x
Huang J.-N., Cheng R.-C., Li D., Tso I.-M., Salticid predation as one potential driving force of ant mimicry in jumping spiders, 10.1098/rspb.2010.1896
O’Hanlon James C., Holwell Gregory I., Herberstein Marie E., Pollinator Deception in the Orchid Mantis, 10.1086/673858
Clarke C A, Sheppard P M, The evolution of mimicry in the butterfly Papilio dardanus, 10.1038/hdy.1960.14
Kunte K., Zhang W., Tenger-Trolander A., Palmer D. H., Martin A., Reed R. D., Mullen S. P., Kronforst M. R., doublesex is a mimicry supergene, 10.1038/nature13112
Kikuchi David W., Seymoure Brett M., Pfennig David W., Mimicry's palette: widespread use of conserved pigments in the aposematic signals of snakes : Pigments in snake mimicry, 10.1111/ede.12064
Penney Heather D., Hassall Christopher, Skevington Jeffrey H., Lamborn Brent, Sherratt Thomas N., The Relationship between Morphological and Behavioral Mimicry in Hover Flies (Diptera: Syrphidae), 10.1086/674612
Lorenzi, M. C., Bagnères, A. G. & Clement, J. L. The role of cuticular hydrocarbons in social insects: is it the same in paper-wasps. [178–189] (Oxford University Press, Oxford, 1996).
Lei Guang-Chun, Hanski Ilkka, Metapopulation Structure of Cotesia melitaearum, a Specialist Parasitoid of the Butterfly Melitaea cinxia, 10.2307/3545804
Harvey Jeffrey A., Comparing and contrasting development and reproductive strategies in the pupal hyperparasitoids Lysibia nana and Gelis agilis (Hymenoptera: Ichneumonidae), 10.1007/s10682-007-9164-x
Nentwig Wolfgang, Wissel Christian, A comparison of prey lengths among spiders, 10.1007/bf00378777
Oelbermann Katja, Scheu Stefan, Stable isotope enrichment (δ15N and δ13C) in a generalist predator (Pardosa lugubris, Araneae: Lycosidae): effects of prey quality, 10.1007/s004420100813
Hubner Gerhard, Dettner Konrad, Hyperparasitoid defense strategies against spiders: the role of chemical and morphological protection, 10.1046/j.1570-7458.2000.00717.x
Raspotnig Günther, Schaider Miriam, Stabentheiner Edith, Leis Hans-Jörg, Karaman Ivo, On the enigmatic scent glands of dyspnoan harvestmen (Arachnida, Opiliones): first evidence for the production of volatile secretions, 10.1007/s00049-014-0146-5
Samu Ferenc, Szirányi András, Kiss Balázs, Foraging in agricultural fields: local ‘sit-and-move’ strategy scales up to risk-averse habitat use in a wolf spider, 10.1006/anbe.2003.2265
Allan R. A., Elgar M. A., Capon R. J., Exploitation of an Ant Chemical Alarm Signal by the Zodariid Spider Habronestes bradleyi Walckenaer, 10.1098/rspb.1996.0012
Moore B.P., Brown W.V., Identification of warning odour components, bitter principles and antifeedants in an aposematic beetle: Metriorrhynchus rhipidius (Coleoptera: Lycidae), 10.1016/0020-1790(81)90016-0
Stoeffler Michael, Maier Tanja S., Tolasch Till, Steidle Johannes L. M., Foreign-language Skills in Rove-Beetles? Evidence for Chemical Mimicry of Ant Alarm Pheromones in Myrmecophilous Pella Beetles (Coleoptera: Staphylinidae), 10.1007/s10886-007-9315-0
Mestre L., Bucher R., Entling M. H., Trait-mediated effects between predators: ant chemical cues induce spider dispersal : Ant cues induce spider dispersal, 10.1111/jzo.12127
Halaj J., Ross D. W., Moldenke A. R., Negative effects of ant foraging on spiders in Douglas-fir canopies, 10.1007/s004420050089
Schiestl Florian P., The evolution of floral scent and insect chemical communication : Evolution of floral scent, 10.1111/j.1461-0248.2010.01451.x
Jumean Zaid, Gries Regine, Unruh Tom, Rowland Eloise, Gries Gerhard, Identification of the Larval Aggregation Pheromone of Codling Moth, Cydia pomonella, 10.1007/s10886-005-3552-x
Siljander Eric, Gries Regine, Khaskin Grigori, Gries Gerhard, Identification of the Airborne Aggregation Pheromone of the Common Bed Bug, Cimex lectularius, 10.1007/s10886-008-9446-y
GATTI PABLO, ZERBA EDUARDO, GONZALEZ-AUDINO PAOLA, Anatomical site of pheromone accumulation and temporal pattern of pheromone emission in the ambrosia beetle Megaplatypus mutatus, 10.1111/j.1365-3032.2011.00779.x
Liepert Caroline, Dettner Konrad, Recognition of aphid parasitoids by honeydew-collecting ants: The role of cuticular lipids in a chemical mimicry system, 10.1007/bf00979653
Liepert Caroline, Dettner Konrad, Role of cuticular hydrocarbons of aphid parasitoids in their relationship to aphid-attending ants, 10.1007/bf02033579
Völkl Wolfgang, Hübner Gerhard, Dettner Konrad, Interactions betweenAlloxysta brevis (Hymenoptera, Cynipoidea, Alloxystidae) and honeydew-collecting ants: How an aphid hyperparasitoid overcomes ant aggression by chemical defense, 10.1007/bf02098397
Penney Heather D., Hassall Christopher, Skevington Jeffrey H., Abbott Kevin R., Sherratt Thomas N., A comparative analysis of the evolution of imperfect mimicry, 10.1038/nature10961
Aubret Fabien, Mangin Alain, The snake hiss: potential acoustic mimicry in a viper-colubrid complex : Snake Acoustic Mimicry, 10.1111/bij.12374
Goubault M., Batchelor T. P, Linforth R. S.T, Taylor A. J, Hardy I. C.W, Volatile emission by contest losers revealed by real-time chemical analysis, 10.1098/rspb.2006.3655
Bibliographic reference
Malcicka, Miriama ; Bezemer, T. Martijn ; Visser, Bertanne ; Bloemberg, Mark ; Snart, Charles J. P. ; et. al. Multi-trait mimicry of ants by a parasitoid wasp. In: Scientific Reports, Vol. 5, p. 1-6 (2015)