Accès à distance ? S'identifier sur le proxy UCLouvain
Improving Card Fraud Detection Through Suspicious Pattern Discovery
Primary tabs
Document type | Communication à un colloque (Conference Paper) – Présentation orale avec comité de sélection |
---|---|
Access type | Accès interdit |
Publication date | 2017 |
Language | Anglais |
Conference | "The 30th International Conference on Industrial, Engineering, Other Applications of Applied Intelligent Systems", Arras (du 27/06/2017 au 30/06/2017) |
Journal information | "Advances in Artificial Intelligence: From Theory to Practice (IEA/AIE 2017)" - Vol. 10351, p. 181-190 (2017) |
Peer reviewed | yes |
Publisher | Benferhat S., Tabia K., Ali M. (eds) |
Publication status | Publié |
Affiliations |
UCL
- SST/ICTM - Institute of Information and Communication Technologies, Electronics and Applied Mathematics UCL - SSH/LouRIM - Louvain Research Institute in Management and Organizations |
Keywords | Credit card fraud detection ; Supervised learning ; Feature engineering ; Frequent pattern mining ; Bicliques ; Graph analysis |
Links |
- Aggarwal, C.C., Han, J.: Frequent Pattern Mining. Springer, Heidelberg (2014)
- Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: International Conference on Management of Data (SIGMOD 1993), pp. 207–216. ACM, New York (1993)
- Bhattacharyya Siddhartha, Jha Sanjeev, Tharakunnel Kurian, Westland J. Christopher, Data mining for credit card fraud: A comparative study, 10.1016/j.dss.2010.08.008
- Bolton Richard J., Hand David J., Provost Foster, Breiman Leo, Bolton Richard J., Hand David J., Statistical Fraud Detection: A ReviewCommentCommentRejoinder, 10.1214/ss/1042727940
- Dal Pozzolo, A.: Adaptive machine learning for credit card fraud detection. Ph.D. thesis, Université libre de Bruxelles (2015)
- Dal Pozzolo Andrea, Caelen Olivier, Le Borgne Yann-Aël, Waterschoot Serge, Bontempi Gianluca, Learned lessons in credit card fraud detection from a practitioner perspective, 10.1016/j.eswa.2014.02.026
- Davis Jesse, Goadrich Mark, The relationship between Precision-Recall and ROC curves, 10.1145/1143844.1143874
- Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)
- Jinyan Li, Guimei Liu, Haiquan Li, Limsoon Wong, Maximal Biclique Subgraphs and Closed Pattern Pairs of the Adjacency Matrix: A One-to-One Correspondence and Mining Algorithms, 10.1109/tkde.2007.190660
- Liaw, A., Wiener, M.: Classification and regression by randomforest. R News 2(3), 18–22 (2002)
- Rajaraman Anand, Ullman Jeffrey David, Mining of Massive Datasets, ISBN:9781139058452, 10.1017/cbo9781139058452
- Sánchez D., Vila M.A., Cerda L., Serrano J.M., Association rules applied to credit card fraud detection, 10.1016/j.eswa.2008.02.001
- Shen Aihua, Tong Rencheng, Deng Yaochen, Application of Classification Models on Credit Card Fraud Detection, 10.1109/icsssm.2007.4280163
- Spackman Kent A., SIGNAL DETECTION THEORY: VALUABLE TOOLS FOR EVALUATING INDUCTIVE LEARNING, Proceedings of the Sixth International Workshop on Machine Learning (1989) ISBN:9781558600362 p.160-163, 10.1016/b978-1-55860-036-2.50047-3
- Van Hulse Jason, Khoshgoftaar Taghi M., Napolitano Amri, Experimental perspectives on learning from imbalanced data, 10.1145/1273496.1273614
- Vlasselaer Veronique Van, Akoglu Leman, Eliassi-Rad Tina, Snoeck Monique, Baesens Bart, Guilt-by-Constellation: Fraud Detection by Suspicious Clique Memberships, 10.1109/hicss.2015.114
- Whitrow C., Hand D. J., Juszczak P., Weston D., Adams N. M., Transaction aggregation as a strategy for credit card fraud detection, 10.1007/s10618-008-0116-z
Bibliographic reference | Braun, Fabian ; Caelen, Olivier ; Smirnov, Evgueni N. ; Kelk, Steven ; Lebichot, Bertrand. Improving Card Fraud Detection Through Suspicious Pattern Discovery.The 30th International Conference on Industrial, Engineering, Other Applications of Applied Intelligent Systems (Arras, du 27/06/2017 au 30/06/2017). In: Advances in Artificial Intelligence: From Theory to Practice (IEA/AIE 2017), Vol. 10351, p. 181-190 (2017) |
---|---|
Permanent URL | http://hdl.handle.net/2078.1/192933 |