User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

Concise Review: Wnt Signaling Pathways in Skin Development and Epidermal Stem Cells

  1. Logan Catriona Y., Nusse Roel, THE WNT SIGNALING PATHWAY IN DEVELOPMENT AND DISEASE, 10.1146/annurev.cellbio.20.010403.113126
  2. Nusse Roel, Wnt signaling and stem cell control, 10.1038/cr.2008.47
  3. Clevers Hans, Nusse Roel, Wnt/β-Catenin Signaling and Disease, 10.1016/j.cell.2012.05.012
  4. Holland Jane D, Klaus Alexandra, Garratt Alistair N, Birchmeier Walter, Wnt signaling in stem and cancer stem cells, 10.1016/j.ceb.2013.01.004
  5. Clevers Hans, Wnt/β-Catenin Signaling in Development and Disease, 10.1016/j.cell.2006.10.018
  6. van Amerongen R., Nusse R., Towards an integrated view of Wnt signaling in development, 10.1242/dev.033910
  7. Polakis Paul, The many ways of Wnt in cancer, 10.1016/j.gde.2006.12.007
  8. Kohn Aimee D., Moon Randall T., Wnt and calcium signaling: β-Catenin-independent pathways, 10.1016/j.ceca.2005.06.022
  9. Kühl Michael, Sheldahl Laird C, Park Maiyon, Miller Jeffrey R, Moon Randall T, The Wnt/Ca2+ pathway, 10.1016/s0168-9525(00)02028-x
  10. Nusse Roel, Clevers Hans, Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities, 10.1016/j.cell.2017.05.016
  11. Nelson W. J., Convergence of Wnt,  -Catenin, and Cadherin Pathways, 10.1126/science.1094291
  12. Herr Patrick, Basler Konrad, Porcupine-mediated lipidation is required for Wnt recognition by Wls, 10.1016/j.ydbio.2011.11.003
  13. den Heuvel, EMBO J, 12, 5293 (1993)
  14. Kadowaki T, Wilder E, Klingensmith J, Zachary K, Perrimon N, The segment polarity gene porcupine encodes a putative multitransmembrane protein involved in Wingless processing., 10.1101/gad.10.24.3116
  15. Bänziger Carla, Soldini Davide, Schütt Corina, Zipperlen Peder, Hausmann George, Basler Konrad, Wntless, a Conserved Membrane Protein Dedicated to the Secretion of Wnt Proteins from Signaling Cells, 10.1016/j.cell.2006.02.049
  16. Bartscherer Kerstin, Pelte Nadège, Ingelfinger Dierk, Boutros Michael, Secretion of Wnt Ligands Requires Evi, a Conserved Transmembrane Protein, 10.1016/j.cell.2006.04.009
  17. DiNardo Stephen, Wehrli Marcel, Dougan Scott T., Caldwell Kim, O'Keefe Louise, Schwartz Stephanie, Vaizel-Ohayon Dalit, Schejter Eyal, Tomlinson Andrew, 10.1038/35035110
  18. He Xi, Tamai Keiko, Semenov Mikhail, Kato Yoichi, Spokony Rebecca, Liu Chunming, Katsuyama Yu, Hess Fred, Saint-Jeannet Jean-Pierre, 10.1038/35035117
  19. Wang Y., The Role of Frizzled3 and Frizzled6 in Neural Tube Closure and in the Planar Polarity of Inner-Ear Sensory Hair Cells, 10.1523/jneurosci.4698-05.2005
  20. Gordon Michael D., Nusse Roel, Wnt Signaling: Multiple Pathways, Multiple Receptors, and Multiple Transcription Factors, 10.1074/jbc.r600015200
  21. Kikuchi Akira, Yamamoto Hideki, Kishida Shosei, Multiplicity of the interactions of Wnt proteins and their receptors, 10.1016/j.cellsig.2006.11.001
  22. Hsieh Jen-Chih, Kodjabachian Laurent, Rebbert Martha L., Rattner Amir, Smallwood Philip M., Samos Cynthia Harryman, Nusse Roel, Dawid Igor B., Nathans Jeremy, A new secreted protein that binds to Wnt proteins and inhibits their activites, 10.1038/18899
  23. Niehrs Christof, Glinka Andrei, Wu Wei, Delius Hajo, Monaghan A. Paula, Blumenstock Claudia, 10.1038/34848
  24. Hoang Bang, Moos Malcolm, Vukicevic Slobodan, Luyten Frank P., Primary Structure and Tissue Distribution of FRZB, a Novel Protein Related toDrosophilaFrizzled, Suggest a Role in Skeletal Morphogenesis, 10.1074/jbc.271.42.26131
  25. Rattner A., Hsieh J.-C., Smallwood P. M., Gilbert D. J., Copeland N. G., Jenkins N. A., Nathans J., A family of secreted proteins contains homology to the cysteine-rich ligand-binding domain of frizzled receptors, 10.1073/pnas.94.7.2859
  26. de Lau W., Peng W. C., Gros P., Clevers H., The R-spondin/Lgr5/Rnf43 module: regulator of Wnt signal strength, 10.1101/gad.235473.113
  27. Hurlstone A., NEW EMBO MEMBER'S REVIEW: T-cell factors: turn-ons and turn-offs, 10.1093/emboj/21.10.2303
  28. HAGEN Thilo, SETHI Jaswinder K., FOXWELL Neale, VIDAL-PUIG Antonio, Signalling activity of beta-catenin targeted to different subcellular compartments, 10.1042/bj20031749
  29. Liu Chunming, Li Yiming, Semenov Mikhail, Han Chun, Baeg Gyeong-Hun, Tan Yi, Zhang Zhuohua, Lin Xinhua, He Xi, Control of β-Catenin Phosphorylation/Degradation by a Dual-Kinase Mechanism, 10.1016/s0092-8674(02)00685-2
  30. Lee Ethan, Salic Adrian, Krüger Roland, Heinrich Reinhart, Kirschner Marc W, The Roles of APC and Axin Derived from Experimental and Theoretical Analysis of the Wnt Pathway, 10.1371/journal.pbio.0000010
  31. Klingensmith J, Nusse R, Perrimon N, The Drosophila segment polarity gene dishevelled encodes a novel protein required for response to the wingless signal., 10.1101/gad.8.1.118
  32. Axelrod J. D., Miller J. R., Shulman J. M., Moon R. T., Perrimon N., Differential recruitment of Dishevelled provides signaling specificity in the planar cell polarity and Wingless signaling pathways, 10.1101/gad.12.16.2610
  33. Behrens Jürgen, von Kries Jens P., Kühl Michael, Bruhn Laurakay, Wedlich Doris, Grosschedl Rudolf, Birchmeier Walter, Functional interaction of β-catenin with the transcription factor LEF-1, 10.1038/382638a0
  34. Mikels Amanda J, Nusse Roel, Purified Wnt5a Protein Activates or Inhibits β-Catenin–TCF Signaling Depending on Receptor Context, 10.1371/journal.pbio.0040115
  35. Ahumada A., Signaling of Rat Frizzled-2 Through Phosphodiesterase and Cyclic GMP, 10.1126/science.1073776
  36. Martinez Sébastien, Scerbo Pierluigi, Giordano Marilyn, Daulat Avais M., Lhoumeau Anne-Catherine, Thomé Virginie, Kodjabachian Laurent, Borg Jean-Paul, The PTK7 and ROR2 Protein Receptors Interact in the Vertebrate WNT/Planar Cell Polarity (PCP) Pathway, 10.1074/jbc.m115.697615
  37. Grumolato L., Liu G., Mong P., Mudbhary R., Biswas R., Arroyave R., Vijayakumar S., Economides A. N., Aaronson S. A., Canonical and noncanonical Wnts use a common mechanism to activate completely unrelated coreceptors, 10.1101/gad.1957710
  38. Sheldahl Laird C., Slusarski Diane C., Pandur Petra, Miller Jeffrey R., Kühl Michael, Moon Randall T., Dishevelled activates Ca2+flux, PKC, and CamKII in vertebrate embryos, 10.1083/jcb.200211094
  39. Ishitani T., Kishida S., Hyodo-Miura J., Ueno N., Yasuda J., Waterman M., Shibuya H., Moon R. T., Ninomiya-Tsuji J., Matsumoto K., The TAK1-NLK Mitogen-Activated Protein Kinase Cascade Functions in the Wnt-5a/Ca2+ Pathway To Antagonize Wnt/ -Catenin Signaling, 10.1128/mcb.23.1.131-139.2003
  40. Murphy L. L. S., Hughes C. C. W., Endothelial Cells Stimulate T Cell NFAT Nuclear Translocation in the Presence of Cyclosporin A: Involvement of the wnt/Glycogen Synthase Kinase-3  Pathway, 10.4049/jimmunol.169.7.3717
  41. Ma Li, Wang Hsien-yu, Mitogen-activated Protein Kinase p38 Regulates the Wnt/Cyclic GMP/Ca2+Non-canonical Pathway, 10.1074/jbc.m702840200
  42. Schlessinger K., Hall A., Tolwinski N., Wnt signaling pathways meet Rho GTPases, 10.1101/gad.1760809
  43. Habas R., Coactivation of Rac and Rho by Wnt/Frizzled signaling is required for vertebrate gastrulation, 10.1101/gad.1022203
  44. Schlessinger Karni, McManus Edward J., Hall Alan, Cdc42 and noncanonical Wnt signal transduction pathways cooperate to promote cell polarity, 10.1083/jcb.200701083
  45. Ho H.-Y. H., Susman M. W., Bikoff J. B., Ryu Y. K., Jonas A. M., Hu L., Kuruvilla R., Greenberg M. E., Wnt5a-Ror-Dishevelled signaling constitutes a core developmental pathway that controls tissue morphogenesis, 10.1073/pnas.1200421109
  46. Yamanaka H., JNK functions in the non-canonical Wnt pathway to regulate convergent extension movements in vertebrates, 10.1093/embo-reports/kvf008
  47. Endo Yoshimi, Wolf Vladimir, Muraiso Kanae, Kamijo Keiju, Soon Lilian, Üren Aykut, Barshishat-Küpper Michal, Rubin Jeffrey S., Wnt-3a-dependent Cell Motility Involves RhoA Activation and Is Specifically Regulated by Dishevelled-2, 10.1074/jbc.m406391200
  48. Habas Raymond, Kato Yoichi, He Xi, Wnt/Frizzled Activation of Rho Regulates Vertebrate Gastrulation and Requires a Novel Formin Homology Protein Daam1, 10.1016/s0092-8674(01)00614-6
  49. Liu W., Sato A., Khadka D., Bharti R., Diaz H., Runnels L. W., Habas R., Mechanism of activation of the Formin protein Daam1, 10.1073/pnas.0707277105
  50. Topol Lilia, Jiang Xueyuan, Choi Hosoon, Garrett-Beal Lisa, Carolan Peter J., Yang Yingzi, Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3–independent β-catenin degradation, 10.1083/jcb.200303158
  51. Matsumoto Kunihiro, Ishitani Tohru, Ninomiya-Tsuji Jun, Nagai Shin-ichi, Nishita Michiru, Meneghini Marc, Barker Nick, Waterman Marian, Bowerman Bruce, Clevers Hans, Shibuya Hiroshi, 10.1038/21674
  52. Bowerman Bruce, Meneghini Marc D., Ishitani Tohru, Carter J. Clayton, Hisamoto Naoki, Ninomiya-Tsuji Jun, Thorpe Christopher J., Hamill Danielle R., Matsumoto Kunihiro, 10.1038/21666
  53. Blanpain Cédric, Fuchs Elaine, Epidermal homeostasis: a balancing act of stem cells in the skin, 10.1038/nrm2636
  54. Wilson Sara, Rydström Anna, Trimborn Tolleiv, Willert Karl, Nusse Roel, Jessell Thomas M., Edlund Thomas, 10.1038/35077115
  55. Wilson Paul A., Hemmati-Brivanlou Ali, Induction of epidermis and inhibition of neural fate by Bmp-4, 10.1038/376331a0
  56. Fuchs Elaine, Scratching the surface of skin development, 10.1038/nature05659
  57. Byrne, Development, 120, 2369 (1994)
  58. M’Boneko V., Merker H.-J., Development and Morphology of the Periderm of Mouse Embryos (Days 9–12 of Gestation), 10.1159/000146662
  59. Lechler Terry, Fuchs Elaine, Asymmetric cell divisions promote stratification and differentiation of mammalian skin, 10.1038/nature03922
  60. Fuchs Elaine, Green Howard, Changes in keratin gene expression during terminal differentiation of the keratinocyte, 10.1016/0092-8674(80)90094-x
  61. Koster Maranke I., Roop Dennis R., Mechanisms Regulating Epithelial Stratification, 10.1146/annurev.cellbio.23.090506.123357
  62. Fuchs Elaine, Raghavan Srikala, GETTING UNDER THE SKIN OF EPIDERMAL MORPHOGENESIS, 10.1038/nrg758
  63. Liu Shuang, Zhang Huishan, Duan Enkui, Epidermal Development in Mammals: Key Regulators, Signals from Beneath, and Stem Cells, 10.3390/ijms140610869
  64. Zhu Xiao-Jing, Liu YuDong, Dai Zhong-Min, Zhang Xiaoyun, Yang XueQin, Li Yan, Qiu Mengsheng, Fu Jiang, Hsu Wei, Chen YiPing, Zhang Zunyi, BMP-FGF Signaling Axis Mediates Wnt-Induced Epidermal Stratification in Developing Mammalian Skin, 10.1371/journal.pgen.1004687
  65. Popp Tanja, Steinritz Dirk, Breit Andreas, Deppe Janina, Egea Virginia, Schmidt Annette, Gudermann Thomas, Weber Christian, Ries Christian, Wnt5a/β-Catenin Signaling Drives Calcium-Induced Differentiation of Human Primary Keratinocytes, 10.1038/jid.2014.149
  66. Schmidt-Ullrich Ruth, Paus Ralf, Molecular principles of hair follicle induction and morphogenesis, 10.1002/bies.20184
  67. van der Veen Carina, Handjiski Bori, Paus Ralf, Müller-Röver Sven, Maurer Marcus, Eichmüller Stefan, Ling Gao, Hofmann Udo, Foitzik Kerstin, Mecklenburg Lars, A Comprehensive Guide for the Recognition and Classification of Distinct Stages of Hair Follicle Morphogenesis, 10.1046/j.1523-1747.1999.00740.x
  68. Sick S., Reinker S., Timmer J., Schlake T., WNT and DKK Determine Hair Follicle Spacing Through a Reaction-Diffusion Mechanism, 10.1126/science.1130088
  69. Chen D., Jarrell A., Guo C., Lang R., Atit R., Dermal  -catenin activity in response to epidermal Wnt ligands is required for fibroblast proliferation and hair follicle initiation, 10.1242/dev.076463
  70. Millar Sarah E., Molecular Mechanisms Regulating Hair Follicle Development, 10.1046/j.0022-202x.2001.01670.x
  71. DasGupta, Development, 126, 4557 (1999)
  72. Zhou P, Byrne C, Jacobs J, Fuchs E, Lymphoid enhancer factor 1 directs hair follicle patterning and epithelial cell fate., 10.1101/gad.9.6.700
  73. Huelsken Joerg, Vogel Regina, Erdmann Bettina, Cotsarelis George, Birchmeier Walter, β-Catenin Controls Hair Follicle Morphogenesis and Stem Cell Differentiation in the Skin, 10.1016/s0092-8674(01)00336-1
  74. Niemann, Development, 129, 95 (2002)
  75. Andl Thomas, Reddy Seshamma T., Gaddapara Trivikram, Millar Sarah E., WNT Signals Are Required for the Initiation of Hair Follicle Development, 10.1016/s1534-5807(02)00167-3
  76. Gat Uri, DasGupta Ramanuj, Degenstein Linda, Fuchs Elaine, De Novo Hair Follicle Morphogenesis and Hair Tumors in Mice Expressing a Truncated β-Catenin in Skin, 10.1016/s0092-8674(00)81631-1
  77. Celso C. L., Transient activation of  -catenin signalling in adult mouse epidermis is sufficient to induce new hair follicles but continuous activation is required to maintain hair follicle tumours, 10.1242/dev.01052
  78. Reddy Seshamma, Andl Thomas, Bagasra Alexander, Lu Min Min, Epstein Douglas J., Morrisey Edward E., Millar Sarah E., Characterization of Wnt gene expression in developing and postnatal hair follicles and identification of Wnt5a as a target of Sonic hedgehog in hair follicle morphogenesis, 10.1016/s0925-4773(01)00452-x
  79. Hu B., Lefort K., Qiu W., Nguyen B.-C., Rajaram R. D., Castillo E., He F., Chen Y., Angel P., Brisken C., Dotto G. P., Control of hair follicle cell fate by underlying mesenchyme through a CSL-Wnt5a-FoxN1 regulatory axis, 10.1101/gad.1886910
  80. Guo N., Hawkins C., Nathans J., From The Cover: Frizzled6 controls hair patterning in mice, 10.1073/pnas.0402802101
  81. Devenport Danelle, Fuchs Elaine, Planar polarization in embryonic epidermis orchestrates global asymmetric morphogenesis of hair follicles, 10.1038/ncb1784
  82. Devenport Danelle, Oristian Daniel, Heller Evan, Fuchs Elaine, Mitotic internalization of planar cell polarity proteins preserves tissue polarity, 10.1038/ncb2284
  83. Hsu Ya-Chieh, Li Lishi, Fuchs Elaine, Emerging interactions between skin stem cells and their niches, 10.1038/nm.3643
  84. Clayton Elizabeth, Doupé David P., Klein Allon M., Winton Douglas J., Simons Benjamin D., Jones Philip H., A single type of progenitor cell maintains normal epidermis, 10.1038/nature05574
  85. Mascré Guilhem, Dekoninck Sophie, Drogat Benjamin, Youssef Khalil Kass, Brohée Sylvain, Sotiropoulou Panagiota A., Simons Benjamin D., Blanpain Cédric, Distinct contribution of stem and progenitor cells to epidermal maintenance, 10.1038/nature11393
  86. Sada Aiko, Jacob Fadi, Leung Eva, Wang Sherry, White Brian S., Shalloway David, Tumbar Tudorita, Defining the cellular lineage hierarchy in the interfollicular epidermis of adult skin, 10.1038/ncb3359
  87. Rompolas P., Mesa K. R., Kawaguchi K., Park S., Gonzalez D., Brown S., Boucher J., Klein A. M., Greco V., Spatiotemporal coordination of stem cell commitment during epidermal homeostasis, 10.1126/science.aaf7012
  88. Roy Edwige, Neufeld Zoltan, Cerone Luca, Wong Ho Yi, Hodgson Samantha, Livet Jean, Khosrotehrani Kiarash, Bimodal behaviour of interfollicular epidermal progenitors regulated by hair follicle position and cycling, 10.15252/embj.201693806
  89. Merrill B. J., Tcf3 and Lef1 regulate lineage differentiation of multipotent stem cells in skin, 10.1101/gad.891401
  90. Barrott J. J., Cash G. M., Smith A. P., Barrow J. R., Murtaugh L. C., Deletion of mouse Porcn blocks Wnt ligand secretion and reveals an ectodermal etiology of human focal dermal hypoplasia/Goltz syndrome, 10.1073/pnas.1006437108
  91. Choi Yeon Sook, Zhang Yuhang, Xu Mingang, Yang Yongguang, Ito Mayumi, Peng Tien, Cui Zheng, Nagy Andras, Hadjantonakis Anna-Katerina, Lang Richard A., Cotsarelis George, Andl Thomas, Morrisey Edward E., Millar Sarah E., Distinct Functions for Wnt/β-Catenin in Hair Follicle Stem Cell Proliferation and Survival and Interfollicular Epidermal Homeostasis, 10.1016/j.stem.2013.10.003
  92. Lim X., Tan S. H., Koh W. L. C., Chau R. M. W., Yan K. S., Kuo C. J., van Amerongen R., Klein A. M., Nusse R., Interfollicular Epidermal Stem Cells Self-Renew via Autocrine Wnt Signaling, 10.1126/science.1239730
  93. Augustin Iris, Gross Julia, Baumann Daniel, Korn Claudia, Kerr Grainne, Grigoryan Tamara, Mauch Cornelia, Birchmeier Walter, Boutros Michael, Loss of epidermal Evi/Wls results in a phenotype resembling psoriasiform dermatitis, 10.1084/jem.20121871
  94. Lien Wen-Hui, Guo Xingyi, Polak Lisa, Lawton Lee N., Young Richard A., Zheng Deyou, Fuchs Elaine, Genome-wide Maps of Histone Modifications Unwind In Vivo Chromatin States of the Hair Follicle Lineage, 10.1016/j.stem.2011.07.015
  95. Greco Valentina, Chen Ting, Rendl Michael, Schober Markus, Pasolli H. Amalia, Stokes Nicole, dela Cruz-Racelis June, Fuchs Elaine, A Two-Step Mechanism for Stem Cell Activation during Hair Regeneration, 10.1016/j.stem.2008.12.009
  96. Lien Wen-Hui, Polak Lisa, Lin Mingyan, Lay Kenneth, Zheng Deyou, Fuchs Elaine, In vivo transcriptional governance of hair follicle stem cells by canonical Wnt regulators, 10.1038/ncb2903
  97. Hsu Ya-Chieh, Pasolli H. Amalia, Fuchs Elaine, Dynamics between Stem Cells, Niche, and Progeny in the Hair Follicle, 10.1016/j.cell.2010.11.049
  98. Rompolas Panteleimon, Mesa Kailin R., Greco Valentina, Spatial organization within a niche as a determinant of stem-cell fate, 10.1038/nature12602
  99. Hsu Ya-Chieh, Li Lishi, Fuchs Elaine, Transit-Amplifying Cells Orchestrate Stem Cell Activity and Tissue Regeneration, 10.1016/j.cell.2014.02.057
  100. Tumbar T., Defining the Epithelial Stem Cell Niche in Skin, 10.1126/science.1092436
  101. Cotsarelis George, Sun Tung-Tien, Lavker Robert M., Label-retaining cells reside in the bulge area of pilosebaceous unit: Implications for follicular stem cells, hair cycle, and skin carcinogenesis, 10.1016/0092-8674(90)90696-c
  102. Xu Zijian, Wang Wenjie, Jiang Kaiju, Yu Zhou, Huang Huanwei, Wang Fengchao, Zhou Bin, Chen Ting, Embryonic attenuated Wnt/β-catenin signaling defines niche location and long-term stem cell fate in hair follicle, 10.7554/elife.10567
  103. Ouspenskaia Tamara, Matos Irina, Mertz Aaron F., Fiore Vincent F., Fuchs Elaine, WNT-SHH Antagonism Specifies and Expands Stem Cells prior to Niche Formation, 10.1016/j.cell.2015.11.058
  104. Plikus Maksim V., Mayer Julie Ann, de la Cruz Damon, Baker Ruth E., Maini Philip K., Maxson Robert, Chuong Cheng-Ming, Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration, 10.1038/nature06457
  105. Oshimori Naoki, Fuchs Elaine, Paracrine TGF-β Signaling Counterbalances BMP-Mediated Repression in Hair Follicle Stem Cell Activation, 10.1016/j.stem.2011.11.005
  106. BOTCHKAREV V. A., Noggin is required for induction of the hair follicle growth phase in postnatal skin, 10.1096/fj.01-0207com
  107. Rompolas Panteleimon, Deschene Elizabeth R., Zito Giovanni, Gonzalez David G., Saotome Ichiko, Haberman Ann M., Greco Valentina, Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration, 10.1038/nature11218
  108. Chi W., Wu E., Morgan B. A., Dermal papilla cell number specifies hair size, shape and cycling and its reduction causes follicular decline, 10.1242/dev.090662
  109. Kandyba Eve, Leung Yvonne, Chen Yi-Bu, Widelitz Randall, Chuong Cheng-Ming, Kobielak Krzysztof, Competitive balance of intrabulge BMP/Wnt signaling reveals a robust gene network ruling stem cell homeostasis and cyclic activation, 10.1073/pnas.1121312110
  110. Festa Eric, Fretz Jackie, Berry Ryan, Schmidt Barbara, Rodeheffer Matthew, Horowitz Mark, Horsley Valerie, Adipocyte Lineage Cells Contribute to the Skin Stem Cell Niche to Drive Hair Cycling, 10.1016/j.cell.2011.07.019
  111. Blanpain Cedric, Lowry William E., Geoghegan Andrea, Polak Lisa, Fuchs Elaine, Self-Renewal, Multipotency, and the Existence of Two Cell Populations within an Epithelial Stem Cell Niche, 10.1016/j.cell.2004.08.012
  112. Morris Rebecca J, Liu Yaping, Marles Lee, Yang Zaixin, Trempus Carol, Li Shulan, Lin Jamie S, Sawicki Janet A, Cotsarelis George, Capturing and profiling adult hair follicle stem cells, 10.1038/nbt950
  113. Lim Xinhong, Tan Si Hui, Yu Ka Lou, Lim Sophia Beng Hui, Nusse Roeland, Axin2marks quiescent hair follicle bulge stem cells that are maintained by autocrine Wnt/β-catenin signaling, 10.1073/pnas.1601599113
  114. Myung Peggy S., Takeo Makoto, Ito Mayumi, Atit Radhika P., Epithelial Wnt Ligand Secretion Is Required for Adult Hair Follicle Growth and Regeneration, 10.1038/jid.2012.230
  115. Huang Sixia, Zhu Xuming, Liu Yanfang, Tao Yixin, Feng Guoyin, He Lin, Guo Xizhi, Ma Gang, Wls Is Expressed in the Epidermis and Regulates Embryonic Hair Follicle Induction in Mice, 10.1371/journal.pone.0045904
  116. Kobielak K., Stokes N., de la Cruz J., Polak L., Fuchs E., Loss of a quiescent niche but not follicle stem cells in the absence of bone morphogenetic protein signaling, 10.1073/pnas.0703004104
  117. Zhang Jiwang, He Xi C., Tong Wei-Gang, Johnson Teri, Wiedemann Leanne M., Mishina Yuji, Feng Jian Q., Li Linheng, Bone Morphogenetic Protein Signaling Inhibits Hair Follicle Anagen Induction by Restricting Epithelial Stem/Progenitor Cell Activation and Expansion, 10.1634/stemcells.2005-0544
  118. Suzuki K., Yamaguchi Y., Villacorte M., Mihara K., Akiyama M., Shimizu H., Taketo M. M., Nakagata N., Tsukiyama T., Yamaguchi T. P., Birchmeier W., Kato S., Yamada G., Embryonic hair follicle fate change by augmented  -catenin through Shh and Bmp signaling, 10.1242/dev.021295
  119. Estrach S., Ambler C. A., Lo Celso C. L., Hozumi K., Watt F. M., Jagged 1 is a  -catenin target gene required for ectopic hair follicle formation in adult epidermis, 10.1242/dev.02644
  120. Zhang Yi, Yu Jin, Shi Chunying, Huang Yaqin, Wang Yun, Yang Tian, Yang Jin, Lef1 Contributes to the Differentiation of Bulge Stem Cells by Nuclear Translocation and Cross-Talk with the Notch Signaling Pathway, 10.7150/ijms.5693
  121. Nicolas Michael, Wolfer Anita, Raj Kenneth, Kummer J. Alain, Mill Pleasantine, van Noort Mascha, Hui Chi-chung, Clevers Hans, Dotto G. Paolo, Radtke Freddy, Notch1 functions as a tumor suppressor in mouse skin, 10.1038/ng1099
  122. Azzolin Luca, Zanconato Francesca, Bresolin Silvia, Forcato Mattia, Basso Giuseppe, Bicciato Silvio, Cordenonsi Michelangelo, Piccolo Stefano, Role of TAZ as Mediator of Wnt Signaling, 10.1016/j.cell.2012.11.027
  123. Azzolin Luca, Panciera Tito, Soligo Sandra, Enzo Elena, Bicciato Silvio, Dupont Sirio, Bresolin Silvia, Frasson Chiara, Basso Giuseppe, Guzzardo Vincenza, Fassina Ambrogio, Cordenonsi Michelangelo, Piccolo Stefano, YAP/TAZ Incorporation in the β-Catenin Destruction Complex Orchestrates the Wnt Response, 10.1016/j.cell.2014.06.013
  124. Varelas Xaralabos, Miller Bryan W., Sopko Richelle, Song Siyuan, Gregorieff Alex, Fellouse Frederic A., Sakuma Rui, Pawson Tony, Hunziker Walter, McNeill Helen, Wrana Jeffrey L., Attisano Liliana, The Hippo Pathway Regulates Wnt/β-Catenin Signaling, 10.1016/j.devcel.2010.03.007
  125. Imajo Masamichi, Miyatake Koichi, Iimura Akira, Miyamoto Atsumu, Nishida Eisuke, A molecular mechanism that links Hippo signalling to the inhibition of Wnt/β-catenin signalling : Hippo signalling regulates β-catenin localization, 10.1038/emboj.2011.487
  126. Silvis M. R., Kreger B. T., Lien W.-H., Klezovitch O., Rudakova G. M., Camargo F. D., Lantz D. M., Seykora J. T., Vasioukhin V.,  -Catenin Is a Tumor Suppressor That Controls Cell Accumulation by Regulating the Localization and Activity of the Transcriptional Coactivator Yap1, 10.1126/scisignal.2001823
  127. Schlegelmilch Karin, Mohseni Morvarid, Kirak Oktay, Pruszak Jan, Rodriguez J. Renato, Zhou Dawang, Kreger Bridget T., Vasioukhin Valera, Avruch Joseph, Brummelkamp Thijn R., Camargo Fernando D., Yap1 Acts Downstream of α-Catenin to Control Epidermal Proliferation, 10.1016/j.cell.2011.02.031
  128. van Amerongen Renée, Fuerer Christophe, Mizutani Makiko, Nusse Roel, Wnt5a can both activate and repress Wnt/β-catenin signaling during mouse embryonic development, 10.1016/j.ydbio.2012.06.020
  129. Lee Ji Min, Kim Ik Soo, Kim Hyunkyung, Lee Jason S., Kim Kyeongkyu, Yim Hwa Young, Jeong Jiyeong, Kim Jung Hwa, Kim Ji-Young, Lee Hanna, Seo Sang-Beom, Kim Hogeun, Rosenfeld Michael G., Kim Keun Il, Baek Sung Hee, RORα Attenuates Wnt/β-Catenin Signaling by PKCα-Dependent Phosphorylation in Colon Cancer, 10.1016/j.molcel.2009.12.022
  130. Witte F., Bernatik O., Kirchner K., Masek J., Mahl A., Krejci P., Mundlos S., Schambony A., Bryja V., Stricker S., Negative regulation of Wnt signaling mediated by CK1-phosphorylated Dishevelled via Ror2, 10.1096/fj.09-150615
  131. Lowry W. E., Defining the impact of  -catenin/Tcf transactivation on epithelial stem cells, 10.1101/gad.1324905
  132. Enshell-Seijffers David, Lindon Catherine, Kashiwagi Mariko, Morgan Bruce A., β-catenin Activity in the Dermal Papilla Regulates Morphogenesis and Regeneration of Hair, 10.1016/j.devcel.2010.01.016
  133. DasGupta Ramanuj, Rhee Horace, Fuchs Elaine, A developmental conundrum : a stabilized form of β-catenin lacking the transcriptional activation domain triggers features of hair cell fate in epidermal cells and epidermal cell fate in hair follicle cells, 10.1083/jcb.200204134
  134. Van Mater D., Transient activation of beta -catenin signaling in cutaneous keratinocytes is sufficient to trigger the active growth phase of the hair cycle in mice, 10.1101/gad.1076103
  135. Narhi K., Jarvinen E., Birchmeier W., Taketo M. M., Mikkola M. L., Thesleff I., Sustained epithelial  -catenin activity induces precocious hair development but disrupts hair follicle down-growth and hair shaft formation, 10.1242/dev.016550
  136. Deschene E. R., Myung P., Rompolas P., Zito G., Sun T. Y., Taketo M. M., Saotome I., Greco V.,  -Catenin Activation Regulates Tissue Growth Non-Cell Autonomously in the Hair Stem Cell Niche, 10.1126/science.1248373
  137. van Genderen C, Okamura R M, Farinas I, Quo R G, Parslow T G, Bruhn L, Grosschedl R, Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice., 10.1101/gad.8.22.2691
  138. Nguyen Hoang, Merrill Bradley J, Polak Lisa, Nikolova Maria, Rendl Michael, Shaver Timothy M, Pasolli H Amalia, Fuchs Elaine, Tcf3 and Tcf4 are essential for long-term homeostasis of skin epithelia, 10.1038/ng.431
  139. Nguyen Hoang, Rendl Michael, Fuchs Elaine, Tcf3 Governs Stem Cell Features and Represses Cell Fate Determination in Skin, 10.1016/j.cell.2006.07.036
Bibliographic reference Veltri, Anthony ; Lang, Christopher ; Lien, Wen-Hui. Concise Review: Wnt Signaling Pathways in Skin Development and Epidermal Stem Cells. In: Stem Cells, Vol. 36, no. 1, p. 22-35 (2018)
Permanent URL http://hdl.handle.net/2078.1/189232