User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

The role of multiplier bounds in fuzzy data envelopment analysis

  1. Agrell Per J., Niknazar Pooria, Structural and behavioral robustness in applied best-practice regulation, 10.1016/j.seps.2013.12.004
  2. Agrell, P. J., Bogetoft, P., Brock, M., & Tind, J. (2005). Efficiency evaluation with convex pairs. Advanced Modeling and Optimization, 7(2), 211–237.
  3. Ali, A. I., & Seiford, L. M. (1993). Computational accuracy and infinitesimals in data envelopment analysis. INFOR: Information Systems and Operational Research, 31(4), 290.
  4. Alirezaee Mohammad Reza, The overall assurance interval for the non-Archimedean Epsilon in DEA models; a partition base algorithm, 10.1016/j.amc.2004.04.111
  5. Alirezaee Mohammad R., Khalili Masoud, Recognizing the efficiency, weak efficiency and inefficiency of DMUs with an epsilon independent linear program, 10.1016/j.amc.2006.05.176
  6. Allen R., Thanassoulis E., Improving envelopment in data envelopment analysis, 10.1016/s0377-2217(03)00175-9
  7. Amin Gholam R., Toloo Mehdi, A polynomial-time algorithm for finding ε in DEA models, 10.1016/s0305-0548(03)00072-8
  8. Bammer, G., & Smithson, M. (Eds.). (2008). Uncertainty and risk: Multidisciplinary perspectives. London, UK: Earthscan Risk in Society Series. Earthscan.
  9. Bessent A., Bessent W., Elam J., Clark T., Efficiency Frontier Determination by Constrained Facet Analysis, 10.1287/opre.36.5.785
  10. Chambers Robert G., Chung Yangho, Färe Rolf, Benefit and Distance Functions, 10.1006/jeth.1996.0096
  11. Chambers R. G., Chung Y., Färe R., Profit, Directional Distance Functions, and Nerlovian Efficiency, 10.1023/a:1022637501082
  12. Charnes A., Cooper W.W., The non-archimedean CCR ratio for efficiency analysis: A rejoinder to Boyd and Färe, 10.1016/0377-2217(84)90102-4
  13. Charnes A, Cooper W.W, Golany B, Seiford L, Stutz J, Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions, 10.1016/0304-4076(85)90133-2
  14. Charnes A., Cooper W.W., Rhodes E., Measuring the efficiency of decision making units, 10.1016/0377-2217(78)90138-8
  15. Charnes A., Cooper W.W., Rhodes E., Measuring the efficiency of decision-making units, 10.1016/0377-2217(79)90229-7
  16. Charnes A., Cooper W. W., Thrall R. M., A structure for classifying and characterizing efficiency and inefficiency in Data Envelopment Analysis, 10.1007/bf00159732
  17. Chen Yao, Morita Hiroshi, Zhu Joe, An Approach for Determining DEA Efficiency Bounds, Multi-Objective Programming and Goal Programming (2003) ISBN:9783540006534 p.105-110, 10.1007/978-3-540-36510-5_12
  18. Cooper, W. W., Seiford, L. M., & Tone, K. (2002). Data envelopment analysis a comprehensive text with models, applications, references and DEA solved software. Berlin: Springer.
  19. Despotis Dimitris K., Smirlis Yiannis G., Data envelopment analysis with imprecise data, 10.1016/s0377-2217(01)00200-4
  20. Emrouznejad Ali, Rostamy-Malkhalifeh Mohsen, Hatami-Marbini Adel, Tavana Madjid, General and multiplicative non-parametric corporate performance models with interval ratio data, 10.1016/j.apm.2011.12.040
  21. Emrouznejad Ali, Rostamy-Malkhalifeh Mohsen, Hatami-Marbini Adel, Tavana Madjid, Aghayi Nazila, An overall profit Malmquist productivity index with fuzzy and interval data, 10.1016/j.mcm.2011.07.003
  22. Emrouznejad Ali, Tavana Madjid, Hatami-Marbini Adel, The State of the Art in Fuzzy Data Envelopment Analysis, Performance Measurement with Fuzzy Data Envelopment Analysis (2014) ISBN:9783642413711 p.1-45, 10.1007/978-3-642-41372-8_1
  23. Green Rodney H., Doyle John R., Cook Wade D., Efficiency bounds in Data Envelopment Analysis, 10.1016/0377-2217(95)00043-7
  24. Guo Peijun, Tanaka Hideo, Fuzzy DEA: a perceptual evaluation method, 10.1016/s0165-0114(99)00106-2
  25. Hatami-Marbini, A., & Saati, S. (2009). Stability of RTS of efficient DMUs in DEA with fuzzy under fuzzy data. Applied Mathematical Sciences, 3, 2157–2166.
  26. Hatami-Marbini Adel, Emrouznejad Ali, Tavana Madjid, A taxonomy and review of the fuzzy data envelopment analysis literature: Two decades in the making, 10.1016/j.ejor.2011.02.001
  27. Hatami-Marbini Adel, Tavana Madjid, Saati Saber, Agrell Per J., Positive and normative use of fuzzy DEA-BCC models: A critical view on NATO enlargement, 10.1111/j.1475-3995.2012.00871.x
  28. Hougaard Jens Leth, Fuzzy scores of technical efficiency, 10.1016/s0377-2217(98)00165-9
  29. Ignatius Joshua, Ghasemi M.-R., Zhang Feng, Emrouznejad Ali, Hatami-Marbini Adel, Carbon efficiency evaluation: An analytical framework using fuzzy DEA, 10.1016/j.ejor.2016.02.014
  30. Jahanshahloo G.R., Khodabakhshi M., Determining assurance interval for non-Archimedean element in the improving outputs model in DEA, 10.1016/s0096-3003(03)00357-6
  31. Kao Chiang, Interval efficiency measures in data envelopment analysis with imprecise data, 10.1016/j.ejor.2005.03.009
  32. Kao C, Liu S-Tai, Data envelopment analysis with missing data: an application to University libraries in Taiwan, 10.1057/palgrave.jors.2600056
  33. Khanjani Shiraz Rashed, Fukuyama Hirofumi, Tavana Madjid, Di Caprio Debora, An integrated data envelopment analysis and free disposal hull framework for cost-efficiency measurement using rough sets, 10.1016/j.asoc.2016.04.043
  34. Khoshfetrat Sahar, Daneshvar Sahand, Improving weak efficiency frontiers in the fuzzy data envelopment analysis models, 10.1016/j.apm.2010.06.008
  35. Klir George J., Where do we stand on measures of uncertainty, ambiguity, fuzziness, and the like?, 10.1016/0165-0114(87)90087-x
  36. Klir George J., Smith Richard M., 10.1023/a:1016784627561
  37. Klir, G. J., & Yuan, B. (1995). Fuzzy sets and fuzzy logic: Theory and applications. New Jersey: Prentice Hall.
  38. Kruse Rudolf, Meyer Klaus Dieter, Statistics with Vague Data, ISBN:9789401082495, 10.1007/978-94-009-3943-1
  39. Land Kenneth C., Lovell C. A. Knox, Thore Sten, Chance-constrained data envelopment analysis, 10.1002/mde.4090140607
  40. LaPlante A.E., Paradi J.C., Evaluation of bank branch growth potential using data envelopment analysis, 10.1016/
  41. Lertworasirikul Saowanee, Fang Shu-Cherng, A. Joines Jeffrey, L.W. Nuttle Henry, Fuzzy data envelopment analysis (DEA): a possibility approach, 10.1016/s0165-0114(02)00484-0
  42. Mehrabian Saeid, Jahanshahloo Gholam R., Alirezaee Mohammad R., Amin Gholam R., An Assurance Interval for the Non-Archimedean Epsilon in DEA Models, 10.1287/opre.48.2.344.12381
  43. Olesen O. B., Petersen N. C., Chance Constrained Efficiency Evaluation, 10.1287/mnsc.41.3.442
  44. Podinovski Victor V., Kuosmanen Timo, Modelling weak disposability in data envelopment analysis under relaxed convexity assumptions, 10.1016/j.ejor.2010.12.003
  45. Qin Rui, Liu Yankui, Liu Zhiqiang, Wang Guoli, Modeling Fuzzy DEA with Type-2 Fuzzy Variable Coefficients, Advances in Neural Networks – ISNN 2009 (2009) ISBN:9783642015090 p.25-34, 10.1007/978-3-642-01510-6_4
  46. Seaver Bill, Triantis Konstantinos, Hoopes Barbara J., Efficiency Performance and Dominance in Influential Subsets: An Evaluation using Fuzzy Clustering and Pair-wise Dominance, 10.1023/b:prod.0000016873.63406.90
  47. Sengupta Jati K., A fuzzy systems approach in data envelopment analysis, 10.1016/0898-1221(92)90203-t
  48. Shokouhi Amir H., Hatami-Marbini Adel, Tavana Madjid, Saati Saber, A robust optimization approach for imprecise data envelopment analysis, 10.1016/j.cie.2010.05.011
  49. Shokouhi Amir H., Shahriari Hamid, Agrell Per J., Hatami-Marbini Adel, Consistent and robust ranking in imprecise data envelopment analysis under perturbations of random subsets of data, 10.1007/s00291-013-0336-5
  50. Simar Léopold, Wilson Paul W., A general methodology for bootstrapping in non-parametric frontier models, 10.1080/02664760050081951
  51. Thanassoulis E., Allen R., Simulating Weights Restrictions in Data Envelopment Analysis by Means of Unobserved DMUs, 10.1287/mnsc.44.4.586
  52. Triantis Konstantinos P., Engineering Applications of Data Envelopment Analysis, International Series in Operations Research & Management Science (2011) ISBN:9781441961501 p.363-402, 10.1007/978-1-4419-6151-8_14
  53. Triantis Konstantinos, Eeckaut Philippe Vanden, 10.1023/a:1007870908622
  54. Triantis Konstantinos, Girod Olivier, 10.1023/a:1018350516517
  55. Triantis Konstantinos, Sarangi Sudipta, Kuchta Dorota, Fuzzy pair-wise dominance and fuzzy indices: An evaluation of productive performance, 10.1016/s0377-2217(02)00141-8
  56. Viertl, R. (1996). Statistical methods for non-precise data. Boca Raton: CRC Press.
  57. Wang Ying-Ming, Luo Ying, Liang Liang, Fuzzy data envelopment analysis based upon fuzzy arithmetic with an application to performance assessment of manufacturing enterprises, 10.1016/j.eswa.2008.06.102
  58. Wang Ying-Ming, Greatbanks Richard, Yang Jian-Bo, Interval efficiency assessment using data envelopment analysis, 10.1016/j.fss.2004.12.011
  59. Zadeh, L. A. (1979). A theory of approximate reasoning. Machine Intelligence, 9, 149–194.
  60. Zadeh L.A., Fuzzy sets, 10.1016/s0019-9958(65)90241-x
  61. Zimmermann H.-J., Fuzzy Sets, Decision Making, and Expert Systems, ISBN:9789401079570, 10.1007/978-94-009-3249-4
  62. Zimmermann H.-J., Fuzzy Set Theory—and Its Applications, ISBN:9789401587044, 10.1007/978-94-015-8702-0
Bibliographic reference Hatami-Marbini, Adel ; Agrell, Per Joakim ; Fukuyama, Hirofumi ; Gholami, Kobra ; Haji Mirza Hossein Khoshnevis, Pegah. The role of multiplier bounds in fuzzy data envelopment analysis. In: Annals of Operations Research, Vol. 250, p. 249-276 (2017)
Permanent URL