Wolsey, Laurence
[UCL]
A linear mixed integer program is an optimization problem in which a nonempty subset of integer variables (unknowns) and a subset of real-valued (continuous) variables exist, the constraints are all linear equations or inequalities, and the objective is a linear function to be minimized (or maximized). After presenting several practical applications of mixed integer programming, we describe the main classes of algorithms, branch-and-bound and branch-and-cut, that are used to solve this hard class of problems. Considerable attention is paid to ways to improve solution times, involving preprocessing, reformulation with cuts and/or new variables, and heuristics.


- Balas, Discrete Applied Mathematics, 89, 1 (1998)
- Heipcke, Applications of Optimization with Xpress (2002)
- Williams, Model Building in Mathematical Programming (1999)
- Wolsey, Integer Programming (1998)
- Pochet, Production Planning by Mixed Integer Programming (2006)
- Schrijver, Theory of Linear and Integer Programming (1986)
- Nemhauser George, Wolsey Laurence, Integer and Combinatorial Optimization : Nemhauser/Integer and Combinatorial Optimization, ISBN:9781118627372, 10.1002/9781118627372
- Marchand, Discrete Applied Mathematics, 123/124, 397 (2002)
- Fugenschuh, Combinatorial Optimization, Vol. 12 of Handbooks in Operations Research and Management Science (2006)
- Cornu��jols, Mathematical Programming B, 112, 3 (2007)
- Wolsey, Mathematical Programming B, 97, 423 (2003)
- Savelsbergh M. W. P., Preprocessing and Probing Techniques for Mixed Integer Programming Problems, 10.1287/ijoc.6.4.445
- Andersen, Mathematical Programming, 71, 221 (1995)
- Achterberg, Operations Research Letters, 33, 42 (2005)
- Combinatorial Analysis, 211 (1960)
- R. E. Gomory An algorithm for the mixed integer problem RM-2597 1960
- Balas, Mathematical Programming, 8, 146 (1975)
- Hammer, Mathematical Programming, 8, 179 (1975)
- Wolsey, Mathematical Programming, 8, 165 (1975)
- Fischetti, Mathematical Programming, 98, 23 (2003)
- Danna, Mathematical Programming, 102, 71 (2005)
- Barnhart, Operations Research, 46, 316 (1998)
- Dantzig, Operations Research, 8, 101 (1960)
- Geoffrion A. M., Lagrangean relaxation for integer programming, Approaches to Integer Programming (1974) ISBN:9783642007392 p.82-114, 10.1007/bfb0120690
- Benders, Numerische Mathematik, 4, 238 (1962)
- Achterberg, Operations Research Letters, 34, 1 (2003)
- http://www.ilog.com/cplex
- http://www.dashoptimization.com
- http://www.lindo.com
- http://www.coin-or.org/
- T. Achterberg 2004 http://scip.zib.de
- M. W. P Savelsbergh http://www2.isye.gatech.edu/ mwps/software/
- R. Fourer D. M. Gay B. W. Kernighan 2002 http://www.ampl.com/
- A. Ben-Tal A. Nemirovski Lectures on Modern Convex Optimization: Analysis, Algorithms and Engineering Applications, MPS-SIAM Series on Optimization 2001
- Geoffrion, Jo. Optimization Theory and Applications, 10, 237 (1972)
- Fletcher, Mathematical Programming, 66, 327 (1994)
- Duran, Mathematical Programming, 36, 307 (1986)
- Floudas, Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications (1995)
- Weismantel, Mixed Integer Nonlinear Programming (2006)
- http://www.gams.com
- http://neos.mcs.anl.gov/neos/solvers/go:BARON/GAMS.html
- Tawarmalami, Mathematical Programming, 99, 563 (2004)
- http://sedumi.mcmaster.ca/
- P. Bonami L. T. Biegler A. R. Conn G. Cornuejols I. E. Grossman C. D. Laird J. Lee A. Lodi F. Margot N. Sawaya A. W��chter An algorithmic framework for convex mixed integer nonlinear programs RC23771 T. J. Watson
- Sawaya (2006)
Bibliographic reference |
Wolsey, Laurence. Mixed Integer Programming. In: Wiley Encyclopedia of Computer Science and Engineering, Wiley-Interscience : USA 2008, p.1883-1892 |
Permanent URL |
http://hdl.handle.net/2078/18625 |