User menu

Moderate salt treatment alleviates ultraviolet-B radiation caused impairment in poplar plants

Bibliographic reference Ma, Xuon ; Ou, Yong-Bin ; Gao, Yong-Feng ; Lutts, Stanley ; Li, Tao-Tao ; et. al. Moderate salt treatment alleviates ultraviolet-B radiation caused impairment in poplar plants. In: Scientific Reports, Vol. 6, no.32890 (2016)
Permanent URL
  1. Martinez-Beltran, J. & Manzur, C. L. In Proceedings of the international salinity forum, Riverside, California. 311–313 (USDA-ARS Salinity Lab Riverside).
  2. Xiong, L. & Zhu, J. K. Salt tolerance. The Arabidopsis book/American Society of Plant Biologists 1, e0048 (2002).
  3. Kronzucker Herbert J., Britto Dev T., Sodium transport in plants: a critical review : Tansley review, 10.1111/j.1469-8137.2010.03540.x
  4. Roy Stuart J, Negrão Sónia, Tester Mark, Salt resistant crop plants, 10.1016/j.copbio.2013.12.004
  5. Deinlein Ulrich, Stephan Aaron B., Horie Tomoaki, Luo Wei, Xu Guohua, Schroeder Julian I., Plant salt-tolerance mechanisms, 10.1016/j.tplants.2014.02.001
  6. Caldwell, M. M. & Flint, S. D. Stratospheric ozone reduction, solar UV-B radiation and terrestrial ecosystems. Climatic change 28, 375–394 (1994).
  7. Sancar Aziz, Sancar Gwndolyn B., DNA Repair Enzymes, 10.1146/
  8. Takahashi Masaaki, Teranishi Mika, Ishida Hiroyuki, Kawasaki Junji, Takeuchi Atsuko, Yamaya Tomoyuki, Watanabe Masao, Makino Amane, Hidema Jun, Cyclobutane pyrimidine dimer (CPD) photolyase repairs ultraviolet-B-induced CPDs in rice chloroplast and mitochondrial DNA : CPD photolyase in rice chloroplasts and mitochondria, 10.1111/j.1365-313x.2011.04500.x
  9. Mackerness, S. H. Plant responses to ultraviolet-B (UV-B: 280–320 nm) stress: What are the key regulators? Plant Growth Regul. 32, 27–39 (2000).
  10. Hideg, E. et al. Detection of singlet oxygen and superoxide with fluorescent sensors in leaves under stress by photoinhibition or UV radiation. Plant Cell Physiol. 43, 1154–1164 (2002).
  11. Kliebenstein, D. J., Lim, J. E., Landry, L. G. & Last, R. L. Arabidopsis UVR8 regulates ultraviolet-B signal transduction and tolerance and contains sequence similarity to human regulator of chromatin condensation 1. Plant Physiol. 130, 234–243 (2002).
  12. Brown, B. A. et al. A UV-B-specific signaling component orchestrates plant UV protection. Pro. Nat. Acad. Sci. 102, 18225–18230 (2005).
  13. Favory, J. J. et al. Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO J. 28, 591–601 (2009).
  14. Christie J. M., Arvai A. S., Baxter K. J., Heilmann M., Pratt A. J., O'Hara A., Kelly S. M., Hothorn M., Smith B. O., Hitomi K., Jenkins G. I., Getzoff E. D., Plant UVR8 Photoreceptor Senses UV-B by Tryptophan-Mediated Disruption of Cross-Dimer Salt Bridges, 10.1126/science.1218091
  15. Rizzini, L. et al. Perception of UV-B by the Arabidopsis UVR8 Protein. Science 332, 103–106 (2011).
  16. Yang, Y., Yao, Y., Xu, G. & Li, C. Growth and physiological responses to drought and elevated ultraviolet-B in two contrasting populations of Hippophae rhamnoides. Physiol. Plant. 124, 431–440 (2005).
  17. Ren, J. et al. The effect of drought and enhanced UV-B radiation on the growth and physiological traits of two contrasting poplar species. For. Ecol. Manag. 239, 112–119 (2007).
  18. Kovács, V. et al. UV-B radiation modifies the acclimation processes to drought or cadmium in wheat. Environ. Exp. Bot. 100, 122–131 (2014).
  19. Rojas-Lillo Yesenia, Alberdi Miren, Acevedo Patricio, Inostroza-Blancheteau Claudio, Rengel Zed, Mora Maria de la Luz, Reyes-Díaz Marjorie, Manganese toxicity and UV-B radiation differentially influence the physiology and biochemistry of highbush blueberry (Vaccinium corymbosum) cultivars, 10.1071/fp12393
  20. Strickler, K. M., Fremier, A. K. & Goldberg, C. S. Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biol. Conserv. 183, 85–92 (2015).
  21. Puniran-Hartley, N., Hartley, J., Shabala, L. & Shabala, S. Salinity-induced accumulation of organic osmolytes in barley and wheat leaves correlates with increased oxidative stress tolerance: in planta evidence for cross-tolerance. Plant Physiol. Bioch. 83, 32–39 (2014).
  22. Xiu-Li WU, , Yong-Bin OU, Gai-Huan YUAN, Yong-Fu CHEN, Yang WANG, Yin-An YAO, Physiological responses of two poplar species to high boron stress, 10.17521/cjpe.2015.0040
  23. Jenkins Gareth I., Signal Transduction in Responses to UV-B Radiation, 10.1146/annurev.arplant.59.032607.092953
  24. Cloix, C. et al. C-terminal region of the UV-B photoreceptor UVR8 initiates signaling through interaction with the COP1 protein. Pro. Nat. Acad. Sci. 109, 16366–16370 (2012).
  25. Heijde Marc, Ulm Roman, UV-B photoreceptor-mediated signalling in plants, 10.1016/j.tplants.2012.01.007
  26. Jiang, L. et al. Arabidopsis STO/BBX24 negatively regulates UV-B signaling by interacting with COP1 and repressing HY5 transcriptional activity. Cell Res. 22, 1046–1057 (2012).
  27. Govindjee. Chlorophyll a Fluorescence: A Bit of Basics and History. In: Papageorgiou, G., Govindjee (eds) Chlorophyll a Fluorescence. Springer, Netherlands, pp 1–41 (2004).
  28. Flores, H. E. & Galston, A. W. Osmotic stress-induced polyamine accumulation in cereal leaves: I. Physiological parameters of the response. Plant Physiol. 75, 102–109 (1984).
  29. Singh Suruchi, Kumari Rima, Agrawal Madhoolika, Agrawal Shashi Bhushan, Differential response of radish plants to supplemental ultraviolet-B radiation under varying NPK levels: chlorophyll fluorescence, gas exchange and antioxidants, 10.1111/j.1399-3054.2012.01589.x
  30. Rai, S., Singh, S., Shrivastava, A. K. & Rai, L. C. Salt and UV-B induced changes in Anabaena PCC 7120: physiological, proteomic and bioinformatic perspectives. Photosynth Res. 118, 105–114 (2013).
  31. Pinhero R. G., Rao M. V., Paliyath G., Murr D. P., Fletcher R. A., Changes in Activities of Antioxidant Enzymes and Their Relationship to Genetic and Paclobutrazol-Induced Chilling Tolerance of Maize Seedlings, 10.1104/pp.114.2.695
  32. Costa Hernán, Gallego Susana M, Tomaro Marı́a L, Effect of UV-B radiation on antioxidant defense system in sunflower cotyledons, 10.1016/s0168-9452(02)00051-1
  33. Fujibe, T. et al. A Methyl Viologen-Resistant Mutant of Arabidopsis, Which Is Allelic to Ozone-Sensitive rcd1, Is Tolerant to Supplemental Ultraviolet-B Irradiation. Plant Physiol. 134, 275–285 (2004).
  34. Martinez-Luscher, J. et al. Characterization of the adaptive response of grapevine (cv. Tempranillo) to UV-B radiation under water deficit conditions. Plant Sci. 232, 13–22 (2015).
  35. Ren J., Yao Y., Yang Y., Korpelainen H., Junttila O., Li C., Growth and physiological responses to supplemental UV-B radiation of two contrasting poplar species, 10.1093/treephys/26.5.665
  36. Singh, S., Agrawal, M. & Agrawal, S. Differential sensitivity of spinach and amaranthus to enhanced UV-B at varying soil nutrient levels: association with gas exchange, UV-B-absorbing compounds and membrane damage. Photosynth Res. 115, 123–138 (2013).
  37. Feng, L., Jiang, H., Zhang, Y. & Zhang, S. Sexual differences in defensive and protective mechanisms of Populus cathayanaexposed to high UV-B radiation and low soil nutrient status. Physiol. Plant. 151, 434–445 (2014).
  38. Liu, L., Gregan, S., Winefield, C. & Jordan, B. From UVR8 to flavonol synthase: UV-B-induced gene expression in Sauvignon blanc grape berry. Plant Cell Environ. 38, 905–919 (2015).
  39. Huang X., Ouyang X., Yang P., Lau O. S., Li G., Li J., Chen H., Deng X. W., Arabidopsis FHY3 and HY5 Positively Mediate Induction of COP1 Transcription in Response to Photomorphogenic UV-B Light, 10.1105/tpc.112.103994
  40. Lippuner, V., Cyert, M. S. & Gasser, C. S. Two classes of plant cDNA clones differentially complement yeast calcineurin mutants and increase salt tolerance of wild-type yeast. J. Biol. Chem. 271, 12859–12866 (1996).
  41. Jenkins Gareth I., Long Joanne C., Wade Helena K., Shenton Matthew R., Bibikova Tatiana N., UV and blue light signalling: pathways regulating chalcone synthase gene expression inArabidopsis : Research review, 10.1046/j.1469-8137.2001.00151.x
  42. Dao T. T. H., Linthorst H. J. M., Verpoorte R., Chalcone synthase and its functions in plant resistance, 10.1007/s11101-011-9211-7
  43. Warren, J. M., Bassman, J. H., Fellman, J. K., Mattinson, D. S. & Eigenbrode, S. Ultraviolet-B radiation alters phenolic salicylate and flavonoid composition of Populus trichocarpa leaves. Tree Physiol. 23, 527–535 (2003).
  44. Morales L. O., Tegelberg R., Brosche M., Keinanen M., Lindfors A., Aphalo P. J., Effects of solar UV-A and UV-B radiation on gene expression and phenolic accumulation in Betula pendula leaves, 10.1093/treephys/tpq051
  45. Hideg, E., Jansen, M. A. & Strid, A. UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates? Trends Plant Sci. 18, 107–115 (2013).
  46. Ulm, R. & Nagy, F. Signalling and gene regulation in response to ultraviolet light. Curr. Opin. Plant Biol. 8, 477–482 (2005).
  47. Kuper, J. & Kisker, C. Damage recognition in nucleotide excision DNA repair. Curr. Opin. Struc. Biol. 22, 88–93 (2012).
  48. Sancar, A. Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem. Rev. 103, 2203–2237 (2003).
  49. Fujiwara, Y. et al. Characterization of DNA recognition by the human UV-damaged DNA-binding protein. J. Biol. Chem. 274, 20027–20033 (1999).
  50. Al Khateeb Wesam M., Schroeder Dana F., Overexpression of Arabidopsis damaged DNA binding protein 1A (DDB1A) enhances UV tolerance, 10.1007/s11103-009-9479-9
  51. Roy, N., Bagchi, S. & Raychaudhuri, P. Damaged DNA binding protein 2 in reactive oxygen species (ROS) regulation and premature senescence. Inter. J. Mol. Sci. 13, 11012–11026 (2012).
  52. Ly Valentina, Hatherell Avril, Kim Esther, Chan Ainsley, Belmonte Mark F., Schroeder Dana F., Interactions between Arabidopsis DNA repair genes UVH6, DDB1A, and DDB2 during abiotic stress tolerance and floral development, 10.1016/j.plantsci.2013.09.004
  53. BANTI VALERIA, LORETI ELENA, NOVI GIACOMO, SANTANIELLO ANTONIETTA, ALPI AMEDEO, PERATA PIERDOMENICO, Heat acclimation and cross-tolerance against anoxia in Arabidopsis, 10.1111/j.1365-3040.2008.01816.x
  54. Mittler, R. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11, 15–19 (2006).
  55. Mittal, D., Madhyastha, D. A. & Grover, A. Genome-wide transcriptional profiles during temperature and oxidative stress reveal coordinated expression patterns and overlapping regulons in rice. PLoS ONE 7, e40899 (2012).
  56. Shabala Lana, Mackay Alex, Tian Yu, Jacobsen Sven-Erik, Zhou Daowei, Shabala Sergey, Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa), 10.1111/j.1399-3054.2012.01599.x
  57. CUIN TRACEY ANN, SHABALA SERGEY, Compatible solutes reduce ROS-induced potassium efflux in Arabidopsis roots, 10.1111/j.1365-3040.2007.01674.x
  58. Tsai Chung-Jui, Harding Scott A., Tschaplinski Timothy J., Lindroth Richard L., Yuan Yinan, Genome-wide analysis of the structural genes regulating defense phenylpropanoid metabolism in Populus, 10.1111/j.1469-8137.2006.01798.x
  59. DOWNEY MARK O., HARVEY JOHN S., ROBINSON SIMON P., Synthesis of flavonols and expression of flavonol synthase genes in the developing grape berries of Shiraz and Chardonnay (Vitis vinifera L.), 10.1111/j.1755-0238.2003.tb00261.x
  60. Madronich, S., Mckenzie, R. L., Caldwell, M. & Bjӧrn, L. O. Changes in ultraviolet -radiation reaching the earth’s surface. AMBIO 24, 143–152 (1995).
  61. Caldwell, M. M. Solar UV-B irradiation and the growth and development of higher plants. In: Giese, A. C. (Ed.), Photophysiology. Academic Press, New York, pp 131–171 (1971).
  62. Strauss A.J., Krüger G.H.J., Strasser R.J., Heerden P.D.R. Van, Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient O-J-I-P, 10.1016/j.envexpbot.2005.01.011
  63. Bates, L., Waldren, R. & Teare, I. Rapid determination of free proline for water-stress studies. Plant Soil 39, 205–207 (1973).
  64. Brennan T., Frenkel C., Involvement of Hydrogen Peroxide in the Regulation of Senescence in Pear, 10.1104/pp.59.3.411
  65. Kramer George F., Norman Helen A., Krizek Donald T., Mirecki Roman M., influence of UV-B radiation on polyamines, lipid peroxidation and membrane lipids in cucumber, 10.1016/0031-9422(91)83595-c
  66. Wang, R. G. et al. Ionic homeostasis and reactive oxygen species control in leaves and xylem sap of two poplars subjected to NaCl stress. Tree Physiol. 28, 947–957 (2008).
  67. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).
  68. Giannopolitis C. N., Ries S. K., Superoxide Dismutases: I. Occurrence in Higher Plants, 10.1104/pp.59.2.309
  69. Adam, A., Bestwick, C., Barna, B. & Mansfield, J. Enzymes regulating the accumulation of active oxygen species during the hypersensitive reaction of bean to Pseudomonas syringae pv. phaseolicola. Planta 197, 240–249 (1995).
  70. Nakano, Y. & Asada, K. Hydrogen Peroxide is Scavenged by Ascorbate -specific Peroxidase in Spinach Chloroplasts. Plant Cell Physiol. 22, 867–880 (1981).
  71. Downey, M. O. & Rochfort, S. Simultaneous separation by reversed-phase high-performance liquid chromatography and mass spectral identification of anthocyanins and flavonols in Shiraz grape skin. J. Chromatogr. A 1201, 43–47 (2008).
  72. Rozen, S. & Skaletsky, H. In Bioinformatics methods and protocols. 365–386 (Springer, 1999).
  73. Wang, H. L. et al. Identification and validation of reference genes for Populus euphratica gene expression analysis during abiotic stresses by quantitative real-time PCR. Physiol. Plant. 152, 529–545, doi: 10.1111/ppl.12206 (2014).
  74. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001).
  75. McCarthy, M., Rosenblatt, J. & Lloyd, R. A modified quantitative polymerase chain reaction assay for measuring gene-specific repair of UV photoproducts in human cells. Mutat. Res./DNA Repair 363, 57–66 (1996).
  76. Mellon, I., Spivak, G. & Hanawalt, P. C. Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell 51, 241–249 (1987).