User menu

Targeting the Tumor Environment in Squamous Cell Carcinoma of the Head and Neck.

Bibliographic reference Schmitz, Sandra ; Machiels, Jean-Pascal. Targeting the Tumor Environment in Squamous Cell Carcinoma of the Head and Neck.. In: Current Treatment Options in Oncology, Vol. 17, no.7, p. 37 [1-16] (2016)
Permanent URL http://hdl.handle.net/2078.1/182657
  1. Gillison Maura L., Restighini Carlo, Anticipation of the Impact of Human Papillomavirus on Clinical Decision Making for the Head and Neck Cancer Patient, 10.1016/j.hoc.2015.08.003
  2. Gregoire V., Lefebvre J.- L., Licitra L., Felip E., , Squamous cell carcinoma of the head and neck: EHNS-ESMO-ESTRO Clinical Practice Guidelines for diagnosis, treatment and follow-up, 10.1093/annonc/mdq185
  3. Chen Daniel S., Mellman Ira, Oncology Meets Immunology: The Cancer-Immunity Cycle, 10.1016/j.immuni.2013.07.012
  4. Ferris Robert L., Immunology and Immunotherapy of Head and Neck Cancer, 10.1200/jco.2015.61.1509
  5. Siveen K.S., Kuttan Girija, Role of macrophages in tumour progression, 10.1016/j.imlet.2009.02.011
  6. Leef George, Thomas Sufi Mary, Molecular communication between tumor-associated fibroblasts and head and neck squamous cell carcinoma, 10.1016/j.oraloncology.2012.12.014
  7. Malm Ian-James, Bruno Tullia C., Fu Juan, Zeng Qi, Taube Janis M., Westra William, Pardoll Drew, Drake Charles G., Kim Young J., Expression profile and in vitro blockade of programmed death-1 in human papillomavirus-negative head and neck squamous cell carcinoma : Programmed death-1/programmed death ligand-1 expression in HN SCC, 10.1002/hed.23706
  8. Seiwert T, Haddad RI, Gupta S, Mehra R, Tahara M, Berger R, et al. Antitumor activity and safety of pembrolizumab in patients (pts) with advanced squamous cell carcinoma of the head and neck (SCCHN): Preliminary results from KEYNOTE-012 expansion cohort. J Clin Oncol. 2015;33. First clinical trial reporting clinical benefits of immunotherapy in SCCHN.
  9. Patel S. P., Kurzrock R., PD-L1 Expression as a Predictive Biomarker in Cancer Immunotherapy, 10.1158/1535-7163.mct-14-0983
  10. Mendes F, Domingues C, Rodrigues-Santos P, Abrantes AM, Goncalves AC, Estrela J, et al. The role of immune system exhaustion on cancer cell escape and anti-tumor immune induction after irradiation. Biochim Biophys Acta. 1865;2016:168–75. This article gives several arguments to test immunotherapy in combination with radiotherapy.
  11. Verbrugge I., Hagekyriakou J., Sharp L. L., Galli M., West A., McLaughlin N. M., Duret H., Yagita H., Johnstone R. W., Smyth M. J., Haynes N. M., Radiotherapy Increases the Permissiveness of Established Mammary Tumors to Rejection by Immunomodulatory Antibodies, 10.1158/0008-5472.can-12-0210
  12. Simone 2nd CB, Burri SH, Heinzerling JH. Novel radiotherapy approaches for lung cancer: combining radiation therapy with targeted and immunotherapies. Transl Lung Cancer Res. 2015;4:545–52.
  13. Schoenfeld Jonathan D., Mahadevan Anand, Floyd Scott R., Dyer Michael A., Catalano Paul J., Alexander Brian M., McDermott David F., Kaplan Irving D., Ipilmumab and cranial radiation in metastatic melanoma patients: a case series and review, 10.1186/s40425-015-0095-8
  14. Jure-Kunkel Maria, Masters Gregg, Girit Emel, Dito Gennaro, Lee Francis, Hunt John T., Humphrey Rachel, Synergy between chemotherapeutic agents and CTLA-4 blockade in preclinical tumor models, 10.1007/s00262-013-1451-5
  15. Machiels Jean-Pascal, Schmitz Sandra, Epidermal Growth Factor Receptor Inhibition in Squamous Cell Carcinoma of the Head and Neck, 10.1016/j.hoc.2015.07.007
  16. Gerlowski Leonard E., Jain Rakesh K., Microvascular permeability of normal and neoplastic tissues, 10.1016/0026-2862(86)90018-x
  17. Palazon A., Aragones J., Morales-Kastresana A., de Landazuri M. O., Melero I., Molecular Pathways: Hypoxia Response in Immune Cells Fighting or Promoting Cancer, 10.1158/1078-0432.ccr-11-1591
  18. Overgaard Jens, Hypoxic modification of radiotherapy in squamous cell carcinoma of the head and neck – A systematic review and meta-analysis, 10.1016/j.radonc.2011.03.004
  19. Toustrup Kasper, Sørensen Brita S., Alsner Jan, Overgaard Jens, Hypoxia Gene Expression Signatures as Prognostic and Predictive Markers in Head and Neck Radiotherapy, 10.1016/j.semradonc.2011.12.006
  20. Jain R. K., Tong R. T., Munn L. L., Effect of Vascular Normalization by Antiangiogenic Therapy on Interstitial Hypertension, Peritumor Edema, and Lymphatic Metastasis: Insights from a Mathematical Model, 10.1158/0008-5472.can-06-4102
  21. Jain Rakesh K., 10.1038/nm0901-987
  22. Matsumoto Shingo, Saito Keita, Takakusagi Yoichi, Matsuo Masayuki, Munasinghe Jeeva P., Morris Herman D., Lizak Martin J., Merkle Hellmut, Yasukawa Keiji, Devasahayam Nallathamby, Suburamanian Sankaran, Mitchell James B., Krishna Murali C., In VivoImaging of Tumor Physiological, Metabolic, and Redox Changes in Response to the Anti-Angiogenic Agent Sunitinib: Longitudinal Assessment to Identify Transient Vascular Renormalization, 10.1089/ars.2013.5725
  23. Machiels Jean-Pascal H., Henry Stéphanie, Zanetta Sylvie, Kaminsky Marie-Christine, Michoux Nicolas, Rommel Denis, Schmitz Sandra, Bompas Emmanuelle, Dillies Anne-Françoise, Faivre Sandrine, Moxhon Anne, Duprez Thierry, Guigay Joel, Phase II Study of Sunitinib in Recurrent or Metastatic Squamous Cell Carcinoma of the Head and Neck: GORTEC 2006-01, 10.1200/jco.2009.23.8584
  24. Fountzilas George, Fragkoulidi Anna, Kalogera-Fountzila Anna, Nikolaidou Martha, Bobos Mattheos, Calderaro Julien, Andreiuolo Felipe, Marselos Marios, A phase II study of sunitinib in patients with recurrent and/or metastatic non-nasopharyngeal head and neck cancer, 10.1007/s00280-009-1070-1
  25. Choong Nicholas W., Kozloff Mark, Taber David, Hu H. Shawn, Wade James, Ivy Percy, Karrison Theodore G., Dekker Allison, Vokes Everett E., Cohen Ezra E. W., Phase II study of sunitinib malate in head and neck squamous cell carcinoma, 10.1007/s10637-009-9296-7
  26. Williamson Stephen K., Moon James, Huang Chao H., Guaglianone Perry P., LeBlanc Michael, Wolf Gregory T., Urba Susan G., Phase II Evaluation of Sorafenib in Advanced and Metastatic Squamous Cell Carcinoma of the Head and Neck: Southwest Oncology Group Study S0420, 10.1200/jco.2009.25.6834
  27. Harari PM, Khuntia D, Traynor AM. Phase I trial of bevacizumab combined with concurrent chemoradiation for squamous cell carcinoma of the head and neck: Preliminary outcome results. J Clin Oncol. 2011;29:abst 5518.
  28. Fury Matthew G., Lee Nancy Y., Sherman Eric, Lisa Donna, Kelly Katherine, Lipson Brynna, Carlson Diane, Stambuk Hilda, Haque Sofia, Shen Ronglai, Kraus Dennis, Shah Jatin, Pfister David G., A phase 2 study of bevacizumab with cisplatin plus intensity-modulated radiation therapy for stage III/IVB head and neck squamous cell cancer : Phase 2 Bevacizumab, CDDP, and RT, 10.1002/cncr.27498
  29. Argiris A., Kotsakis A. P., Hoang T., Worden F. P., Savvides P., Gibson M. K., Gyanchandani R., Blumenschein G. R., Chen H. X., Grandis J. R., Harari P. M., Kies M. S., Kim S., Cetuximab and bevacizumab: preclinical data and phase II trial in recurrent or metastatic squamous cell carcinoma of the head and neck, 10.1093/annonc/mds245
  30. Argiris A, Li S, Savvides P, Forastière AA, Burtness B. Safety analysis of a phase III randomized trial of chemotherapy with or without bevacizumab (B) in recurrent or metastatic squamous cell carcinoma of the head and neck (R/M SCCHN). J Clin Oncol. 2015;33.
  31. Blumenschein GR, Glisson BS, Lu C. Final results of a phase II study of sorafenib in combination with carboplatin and paclitaxel in patients with metastatic or recurrent squamous cell cancer of the head and neck (SCCHN). J Clin Oncol. 2012;30:abst 5592.
  32. Sano D., Matsumoto F., Valdecanas D. R., Zhao M., Molkentine D. P., Takahashi Y., Hanna E. Y., Papadimitrakopoulou V., Heymach J., Milas L., Myers J. N., Vandetanib Restores Head and Neck Squamous Cell Carcinoma Cells' Sensitivity to Cisplatin and Radiation In Vivo and In Vitro, 10.1158/1078-0432.ccr-10-2120
  33. Papadimitrakopoulou Vasiliki A., Frank Steven J., Cohen Ezra W., Hirsch Fred R., Myers Jeffrey N., Heymach John V., Lin Heather, Tran Hai T., Chen Changhu R., Jimeno Antonio, Nedzi Lucien, Vasselli Joseph R., Lowe Elizabeth S., Raben David, Phase I study of vandetanib with radiation therapy with or without cisplatin in locally advanced head and neck squamous cell carcinoma : Vandetanib Phase I Combination Study, 10.1002/hed.23922
  34. Hynes Richard O., Integrins, 10.1016/s0092-8674(02)00971-6
  35. Mantoni T. S., Lunardi S., Al-Assar O., Masamune A., Brunner T. B., Pancreatic Stellate Cells Radioprotect Pancreatic Cancer Cells through  1-Integrin Signaling, 10.1158/0008-5472.can-10-1633
  36. Samuel Michael S., Lopez Jose I., McGhee Ewan J., Croft Daniel R., Strachan David, Timpson Paul, Munro June, Schröder Ewald, Zhou Jing, Brunton Valerie G., Barker Nick, Clevers Hans, Sansom Owen J., Anderson Kurt I., Weaver Valerie M., Olson Michael F., Actomyosin-Mediated Cellular Tension Drives Increased Tissue Stiffness and β-Catenin Activation to Induce Epidermal Hyperplasia and Tumor Growth, 10.1016/j.ccr.2011.05.008
  37. Sun Cui-Cui, Qu Xian-Jun, Gao Zu-Hua, Integrins : players in cancer progression and targets in cancer therapy, 10.1097/cad.0000000000000145
  38. Seguin Laetitia, Desgrosellier Jay S., Weis Sara M., Cheresh David A., Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance, 10.1016/j.tcb.2014.12.006
  39. Aoudjit F, Vuori K. Integrin signaling in cancer cell survival and chemoresistance. Chemother Res Pract. 2012;2012:283181.
  40. Gaggioli Cedric, Hooper Steven, Hidalgo-Carcedo Cristina, Grosse Robert, Marshall John F., Harrington Kevin, Sahai Erik, Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells, 10.1038/ncb1658
  41. Valiathan Rajeshwari R., Marco Marta, Leitinger Birgit, Kleer Celina G., Fridman Rafael, Discoidin domain receptor tyrosine kinases: new players in cancer progression, 10.1007/s10555-012-9346-z
  42. Hedberg Matthew L., Goh Gerald, Chiosea Simion I., Bauman Julie E., Freilino Maria L., Zeng Yan, Wang Lin, Diergaarde Brenda B., Gooding William E., Lui Vivian W.Y., Herbst Roy S., Lifton Richard P., Grandis Jennifer R., Genetic landscape of metastatic and recurrent head and neck squamous cell carcinoma, 10.1172/jci82066
  43. Hammerman Peter S., Sos Martin L., Ramos Alex H., Xu Chunxiao, Dutt Amit, Zhou Wenjun, Brace Lear E., Woods Brittany A., Lin Wenchu, Zhang Jianming, Deng Xianming, Lim Sang Min, Heynck Stefanie, Peifer Martin, Simard Jeffrey R., Lawrence Michael S., Onofrio Robert C., Salvesen Helga B., Seidel Danila, Zander Thomas, Heuckmann Johannes M., Soltermann Alex, Moch Holger, Koker Mirjam, Leenders Frauke, Gabler Franziska, Querings Silvia, Ansén Sascha, Brambilla Elisabeth, Brambilla Christian, Lorimier Philippe, Brustugun Odd Terje, Helland Åslaug, Petersen Iver, Clement Joachim H., Groen Harry, Timens Wim, Sietsma Hannie, Stoelben Erich, Wolf Jürgen, Beer David G., Tsao Ming Sound, Hanna Megan, Hatton Charles, Eck Michael J., Janne Pasi A., Johnson Bruce E., Winckler Wendy, Greulich Heidi, Bass Adam J., Cho Jeonghee, Rauh Daniel, Gray Nathanael S., Wong Kwok-Kin, Haura Eric B., Thomas Roman K., Meyerson Matthew, Mutations in the DDR2 Kinase Gene Identify a Novel Therapeutic Target in Squamous Cell Lung Cancer , 10.1158/2159-8274.cd-11-0005
  44. Raju Uma, Riesterer Oliver, Wang Zhi-Qiang, Molkentine David P., Molkentine Jessica M., Johnson Faye M., Glisson Bonnie, Milas Luka, Ang K. Kian, Dasatinib, a multi-kinase inhibitor increased radiation sensitivity by interfering with nuclear localization of epidermal growth factor receptor and by blocking DNA repair pathways, 10.1016/j.radonc.2012.08.010
  45. Brooks Heather D., Glisson Bonnie S., Bekele B. Nebiyou, Ginsberg Lawrence E., El-Naggar Adel, Culotta Kirk S., Takebe Naoko, Wright John, Tran Hai T., Papadimitrakopoulou Vassiliki A., Phase 2 study of dasatinib in the treatment of head and neck squamous cell carcinoma, 10.1002/cncr.25769
  46. Afratis Nikos, Gialeli Chrisostomi, Nikitovic Dragana, Tsegenidis Theodore, Karousou Evgenia, Theocharis Achilleas D., Pavão Mauro S., Tzanakakis George N., Karamanos Nikos K., Glycosaminoglycans: key players in cancer cell biology and treatment : GAG targeting in cancer cell biology, 10.1111/j.1742-4658.2012.08529.x
  47. Theocharis Achilleas D., Skandalis Spyridon S., Tzanakakis George N., Karamanos Nikos K., Proteoglycans in health and disease: novel roles for proteoglycans in malignancy and their pharmacological targeting : Proteoglycans as potential pharmacological targets, 10.1111/j.1742-4658.2010.07800.x
  48. Vynios Demitrios H., Theocharis Dimitrios A., Papageorgakopoulou Nikoletta, Papadas Theodore A., Mastronikolis Nikolaos S., Goumas Panos D., Stylianou Marina, Skandalis Spyros S., Biochemical Changes of Extracellular Proteoglycans in Squamous Cell Laryngeal Carcinoma, 10.1080/03008200802147662
  49. Stylianou M, Skandalis SS, Papadas TA, Mastronikolis NS, Theocharis DA, Papageorgakopoulou N, et al. Stage-related decorin and versican expression in human laryngeal cancer. Anticancer Res. 2008;28:245–51.
  50. Pukkila M., Kosunen A., Ropponen K., Virtaniemi J., Kellokoski J., Kumpulainen E., Pirinen R., Nuutinen J., Johansson R., Kosma V.-M., High stromal versican expression predicts unfavourable outcome in oral squamous cell carcinoma, 10.1136/jcp.2005.034181
  51. Arichi Naoko, Mitsui Yozo, Hiraki Miho, Nakamura Shigenobu, Hiraoka Takeo, Sumura Masahiro, Hirata Hiroshi, Tanaka Yuichiro, Dahiya Rajvir, Yasumoto Hiroaki, Shiina Hiroaki, Versican is a potential therapeutic target in docetaxel-resistant prostate cancer, 10.18632/oncoscience.136
  52. Wang Z, Li Z, Wang Y, Cao D, Wang X, Jiang M, et al. Versican silencing improves the antitumor efficacy of endostatin by alleviating its induced inflammatory and immunosuppressive changes in the tumor microenvironment. Oncol Rep. 2015;33:2981–91. Preclinical research on versican, underlining the important role which plays this proteoglycan in the tumor environment and supporting association between antiangiogenic therapies and versican inhibitors.
  53. Merline R., Moreth K., Beckmann J., Nastase M. V., Zeng-Brouwers J., Tralhao J. G., Lemarchand P., Pfeilschifter J., Schaefer R. M., Iozzo R. V., Schaefer L., Signaling by the Matrix Proteoglycan Decorin Controls Inflammation and Cancer Through PDCD4 and MicroRNA-21, 10.1126/scisignal.2001868
  54. Bi Xiu-Li, Yang Wancai, Biological functions of decorin in cancer, 10.5732/cjc.012.10301
  55. Sofeu Feugaing David Denis, Götte Martin, Viola Manuela, More than matrix: The multifaceted role of decorin in cancer, 10.1016/j.ejcb.2012.08.004
  56. Dil Nyla, Banerjee Abhijit G, Knockdown of aberrantly expressed nuclear localized decorin attenuates tumour angiogenesis related mediators in oral cancer progression model in vitro, 10.1186/1758-3284-4-11
  57. Kasamatsu Atsushi, Uzawa Katsuhiro, Minakawa Yasuyuki, Ishige Shunsaku, Kasama Hiroki, Endo-Sakamoto Yosuke, Ogawara Katsunori, Shiiba Masashi, Takiguchi Yuichi, Tanzawa Hideki, Decorin in human oral cancer: A promising predictive biomarker of S-1 neoadjuvant chemosensitivity, 10.1016/j.bbrc.2014.12.093
  58. Xian Xiaojie, Gopal Sandeep, Couchman John R., Syndecans as receptors and organizers of the extracellular matrix, 10.1007/s00441-009-0829-3
  59. Vihinen Pia, Ala-aho Risto, Kahari Veli-Matti, Matrix Metalloproteinases as Therapeutic Targets in Cancer, 10.2174/1568009053765799
  60. Burduk Pawel K., Bodnar Magdalena, Sawicki Piotr, Szylberg Łukasz, Wiśniewska Ewa, Kaźmierczak Wojciech, Martyńska Maria, Marszałek Andrzej, Expression of metalloproteinases 2 and 9 and tissue inhibitors 1 and 2 as predictors of lymph node metastases in oropharyngeal squamous cell carcinoma : Metalloproteinase and Tissue Inhibitor Expression in Oropharyngeal Cancer, 10.1002/hed.23618
  61. Ma J, Wang J, Fan W, Pu X, Zhang D, Fan C, et al. Upregulated TIMP-1 correlates with poor prognosis of laryngeal squamous cell carcinoma. Int J Clin Exp Pathol. 2014;7:246–54.
  62. NANDA D. P., DUTTA K., GANGULY K. K., HAJRA S., MANDAL S. S., BISWAS J., SINHA D., MMP-9 as a potential biomarker for carcinoma of oral cavity: a study in eastern India, 10.4149/neo_2014_091
  63. Boeckx C, Blockx L, de Beeck KO, Limame R, Camp GV, Peeters M, et al. Establishment and characterization of cetuximab resistant head and neck squamous cell carcinoma cell lines: focus on the contribution of the AP-1 transcription factor. Am J Cancer Res. 2015;5:1921–38. Preclinical study investigating cetuximab resistance in SCCHN cell lines by gene expression profiling. Beside several upregulated genes related to tumor environment, EMT was also observed in Cetuximab resistant cells.
  64. Johansson A.-C., Ansell A., Jerhammar F., Lindh M. B., Grenman R., Munck-Wikland E., Ostman A., Roberg K., Cancer-Associated Fibroblasts Induce Matrix Metalloproteinase-Mediated Cetuximab Resistance in Head and Neck Squamous Cell Carcinoma Cells, 10.1158/1541-7786.mcr-12-0030
  65. Vandenbroucke Roosmarijn E., Libert Claude, Is there new hope for therapeutic matrix metalloproteinase inhibition?, 10.1038/nrd4390
  66. Eustace Brenda K., Jay Daniel G., Extracellular Roles for the Molecular Chaperone, HSP90, 10.4161/cc.3.9.1088
  67. Stellas Dimitris, El Hamidieh Avraam, Patsavoudi Evangelia, Monoclonal antibody 4C5 prevents activation of MMP2 and MMP9 by disrupting their interaction with extracellular HSP90 and inhibits formation of metastatic breast cancer cell deposits, 10.1186/1471-2121-11-51
  68. Hunter Morgan C., O’Hagan Kyle L., Kenyon Amy, Dhanani Karim C. H., Prinsloo Earl, Edkins Adrienne L., Hsp90 Binds Directly to Fibronectin (FN) and Inhibition Reduces the Extracellular Fibronectin Matrix in Breast Cancer Cells, 10.1371/journal.pone.0086842
  69. Spiegelberg D, Dascalu A, Mortensen AC, Abramenkovs A, Kuku G, Nestor M, et al. The novel HSP90 inhibitor AT13387 potentiates radiation effects in squamous cell carcinoma and adenocarcinoma cells. Oncotarget. 2015;6:35652–66. Preclinical study showing the benefit and potential mechanisms of HSP90 inhibition in squamous cell carcinoma to overcome radioresistance.
  70. Patel Kirtesh, Wen Jing, Magliocca Kelly, Muller Susan, Liu Yuan, Chen Zhuo Georgia, Saba Nabil, Diaz Roberto, Heat shock protein 90 (HSP90) is overexpressed in p16-negative oropharyngeal squamous cell carcinoma, and its inhibition in vitro potentiates the effects of chemoradiation, 10.1007/s00280-014-2584-8
  71. De Boeck Astrid, Narine Kishan, De Neve Wilfried, Mareel Marc, Bracke Marc, De Wever Olivier, Resident and bone marrow-derived mesenchymal stem cells in head and neck squamous cell carcinoma, 10.1016/j.oraloncology.2010.01.016
  72. Erez Neta, Truitt Morgan, Olson Peter, Hanahan Douglas, Cancer-Associated Fibroblasts Are Activated in Incipient Neoplasia to Orchestrate Tumor-Promoting Inflammation in an NF-κB-Dependent Manner, 10.1016/j.ccr.2009.12.041
  73. Kojima Y., Acar A., Eaton E. N., Mellody K. T., Scheel C., Ben-Porath I., Onder T. T., Wang Z. C., Richardson A. L., Weinberg R. A., Orimo A., Autocrine TGF-  and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts, 10.1073/pnas.1013805107
  74. Ishikawa T, Nakashiro K, Klosek SK, Goda H, Hara S, Uchida D, et?al. Hypoxia enhances CXCR4 expression by activating HIF-1 in oral squamous cell carcinoma. Oncol Rep. 2009;21:707–12.
  75. Orimo Akiro, Weinberg Robert A., Heterogeneity of stromal fibroblasts in tumor, 10.4161/cbt.6.4.4255
  76. Sugimoto Hikaru, Mundel Thomas M, Kieran Mark W., Kalluri Raghu, Identification of fibroblast heterogeneity in the tumor microenvironment, 10.4161/cbt.5.12.3354
  77. De Wever O, Nguyen QD, Van Hoorde L, Bracke M, Bruyneel E, Gespach C, et?al. Tenascin-C and SF/HGF produced by myofibroblasts in?vitro provide convergent pro-invasive signals to human colon cancer cells through RhoA and Rac. FASEB J. 2004;18:1016–8.
  78. Kikuchi Yoshinao, Kashima Takeshi G., Nishiyama Takashi, Shimazu Kazuhiro, Morishita Yasuyuki, Shimazaki Masashi, Kii Isao, Horie Hisanaga, Nagai Hideo, Kudo Akira, Fukayama Masashi, Periostin Is Expressed in Pericryptal Fibroblasts and Cancer-associated Fibroblasts in the Colon, 10.1369/jhc.2008.951061
  79. Pietras Kristian, Sjöblom Tobias, Rubin Kristofer, Heldin Carl-Henrik, Östman Arne, PDGF receptors as cancer drug targets, 10.1016/s1535-6108(03)00089-8
  80. LI MINMIN, LI MEI, YIN TAO, SHI HUASHAN, WEN YUAN, ZHANG BINGLAN, CHEN MEIHUA, XU GUANGCHAO, REN KEXIN, WEI YUQUAN, Targeting of cancer-associated fibroblasts enhances the efficacy of cancer chemotherapy by regulating the tumor microenvironment, 10.3892/mmr.2016.4868
  81. Wheeler Sarah Elizabeth, Shi Huifang, Lin Fangchen, Dasari Sumana, Bednash Joseph, Thorne Stephen, Watkins Simon, Joshi Radhika, Thomas Sufi Mary, Enhancement of head and neck squamous cell carcinoma proliferation, invasion, and metastasis by tumor-associated fibroblasts in preclinical models : Tumor-Associated Fibroblasts Facilitate Tumor Progression, 10.1002/hed.23312
  82. Qin Xing, Yan Ming, Zhang Jianjun, Wang Xu, Shen Zongze, Lv Zhongjing, Li Zhihui, Wei Wenyi, Chen Wantao, TGFβ3-mediated induction of Periostin facilitates head and neck cancer growth and is associated with metastasis, 10.1038/srep20587
  83. Zhu M., Saxton R. E., Ramos L., Chang D. D., Karlan B. Y., Gasson J. C., Slamon D. J., Neutralizing Monoclonal Antibody to Periostin Inhibits Ovarian Tumor Growth and Metastasis, 10.1158/1535-7163.mct-11-0046
  84. Kyutoku M, Taniyama Y, Katsuragi N, Shimizu H, Kunugiza Y, Iekushi K, et al. Role of periostin in cancer progression and metastasis: inhibition of breast cancer progression and metastasis by anti-periostin antibody in a murine model. Int J Mol Med. 2011;28:181–6.
  85. Teichgräber Volker, Monasterio Carmen, Chaitanya Krishna, Boger Regina, Gordon Katrin, Dieterle Thomas, Jäger Dirk, Bauer Stefan, Specific inhibition of fibroblast activation protein (FAP)-alpha prevents tumor progression in vitro, 10.1016/j.advms.2015.04.006
  86. Albrengues Jean, Bertero Thomas, Grasset Eloise, Bonan Stephanie, Maiel Majdi, Bourget Isabelle, Philippe Claude, Herraiz Serrano Cecilia, Benamar Samia, Croce Olivier, Sanz-Moreno Victoria, Meneguzzi Guerrino, Feral Chloe C., Cristofari Gael, Gaggioli Cedric, Epigenetic switch drives the conversion of fibroblasts into proinvasive cancer-associated fibroblasts, 10.1038/ncomms10204
  87. Kumar Dhruv, Kandl Christopher, Hamilton Chase D’Arcy, Shnayder Yelizaveta, Tsue Terance Ted, Kakarala Kiran, Ledgerwood Levi, Sun Xiuzhi Susan, Huang Hongzhou (John), Girod Douglas, Thomas Sufi Mary, Mitigation of Tumor-Associated Fibroblast-Facilitated Head and Neck Cancer Progression With Anti–Hepatocyte Growth Factor Antibody Ficlatuzumab, 10.1001/jamaoto.2015.2381
  88. Steinbichler TB, Metzler V, Pritz C, Riechelmann H, Dudas J. Tumor-associated fibroblast-conditioned medium induces CDDP resistance in HNSCC cells. Oncotarget. 2015. This study underlines the interest of co-cultures in preclinical investigations. Medium coming from co-cultures was able to induce EMT in SCCHN cells and increases chemoresistance.
  89. Zhou Bin, Chen Wei-Liang, Wang You-Yuan, Lin Zhao-Yu, Zhang Da-Ming, Fan Song, Li Jin-Song, A role for cancer-associated fibroblasts in inducing the epithelial-to-mesenchymal transition in human tongue squamous cell carcinoma, 10.1111/jop.12172
  90. Schmitz S, Bindea G, Albu RI, Mlecnik B, Machiels JP. Cetuximab promotes epithelial to mesenchymal transition and cancer associated fibroblasts in patients with head and neck cancer. Oncotarget. 2015;6:34288–99. First clinical study demonstrating EMT and CAF in patients treated by cetuximab in a window of opportunity study.
  91. Oliveira-Neto Helenisa Helena, Silva Erica Tatiane, Rodrigues Leles Cláudio, Mendonça Elismauro Francisco, de Cassia Goncalves Alencar Rita, Silva Tarcília Aparecida, Carvalho Batista Aline, Involvement of CXCL12 and CXCR4 in Lymph Node Metastases and Development of Oral Squamous Cell Carcinomas, 10.1159/000152944
  92. Albert Sébastien, Riveiro Maria Eugenia, Halimi Caroline, Hourseau Muriel, Couvelard Anne, Serova Maria, Barry Béatrix, Raymond Eric, Faivre Sandrine, Focus on the role of the CXCL12/CXCR4 chemokine axis in head and neck squamous cell carcinoma : CXCR4/CXCL12 in Head and Neck Carcinoma, 10.1002/hed.23217
  93. Albert S, Hourseau M, Halimi C, Serova M, Descatoire V, Barry B, et al. Prognostic value of the chemokine receptor CXCR4 and epithelial-to-mesenchymal transition in patients with squamous cell carcinoma of the mobile tongue. Oral Oncol. 2012;48:1263–71. Clinical translational study suggesting that CXCR4 is a marker of tumor aggressiveness in patients with oral SCCHN. Vimentin is also considered as an independent prognostic factor of poor survival.
  94. Yu Tao, Wu Yingying, Huang Yi, Yan Chaoran, Liu Ying, Wang Zongsheng, Wang Xiaoyi, Wen Yuming, Wang Changmei, Li Longjiang, RNAi Targeting CXCR4 Inhibits Tumor Growth Through Inducing Cell Cycle Arrest and Apoptosis, 10.1038/mt.2011.257
  95. Koontongkaew Sittichai, Amornphimoltham Panomwat, Monthanpisut Paopanga, Saensuk Theeranuch, Leelakriangsak Montira, Fibroblasts and extracellular matrix differently modulate MMP activation by primary and metastatic head and neck cancer cells, 10.1007/s12032-011-9871-6
  96. Onoue T, Uchida D, Begum NM, Tomizuka Y, Yoshida H, Sato M. Epithelial-mesenchymal transition induced by the stromal cell-derived factor-1/CXCR4 system in oral squamous cell carcinoma cells. Int J Oncol. 2006;29:1133–8.
  97. Yoon Y., Liang Z., Zhang X., Choe M., Zhu A., Cho H. T., Shin D. M., Goodman M. M., Chen Z., Shim H., CXC Chemokine Receptor-4 Antagonist Blocks Both Growth of Primary Tumor and Metastasis of Head and Neck Cancer in Xenograft Mouse Models, 10.1158/0008-5472.can-06-2263
  98. Liang Zhongxing, Brooks Joann, Willard Margaret, Liang Ke, Yoon Younghyoun, Kang Seunghee, Shim Hyunsuk, CXCR4/CXCL12 axis promotes VEGF-mediated tumor angiogenesis through Akt signaling pathway, 10.1016/j.bbrc.2007.05.182
  99. Tan C.-T., Chu C.-Y., Lu Y.-C., Chang C.-C., Lin B.-R., Wu H.-H., Liu H.-L., Cha S.-T., Prakash E., Ko J.-Y., Kuo M.-L., CXCL12/CXCR4 promotes laryngeal and hypopharyngeal squamous cell carcinoma metastasis through MMP-13-dependent invasion via the ERK1/2/AP-1 pathway, 10.1093/carcin/bgn108
  100. Azad BB, Chatterjee S, Lesniak WG, Lisok A, Pullambhatla M, Bhujwalla ZM, et al. A fully human CXCR4 antibody demonstrates diagnostic utility and therapeutic efficacy in solid tumor xenografts. Oncotarget. 2016.