User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

A n-3 PUFA depletion applied to rainbow trout fry (Oncorhynchus mykiss) does not modulate its subsequent lipid bioconversion capacity

  • Open access
  • PDF
  • 425.13 K
  1. Gil Angel, Gil Fernando, Fish, a Mediterranean source of n-3 PUFA: benefits do not justify limiting consumption, 10.1017/s0007114514003742
  2. Kris-Etherton P. M., Fish Consumption, Fish Oil, Omega-3 Fatty Acids, and Cardiovascular Disease, 10.1161/01.cir.0000038493.65177.94
  3. Ruxton C. H. S., Calder P. C., Reed S. C., Simpson M. J. A., The impact of long-chain n-3 polyunsaturated fatty acids on human health, 10.1079/nrr200497
  4. Glencross Brett D., Exploring the nutritional demand for essential fatty acids by aquaculture species, 10.1111/j.1753-5131.2009.01006.x
  5. Nutrient Requirements of Fish and Shrimp (2011)
  6. The State of World Fisheries and Aquaculture 2014 (2014)
  7. Demand and Supply of Feed Ingredients for Farmed Fish and Crustaceans: Trends and Prospects. (2011)
  8. Turchini Giovanni M., Torstensen Bente E., Ng Wing-Keong, Fish oil replacement in finfish nutrition, 10.1111/j.1753-5131.2008.01001.x
  9. Tocher D.R., Bell J.G., MacGlaughlin P., McGhee F., Dick J.R., Hepatocyte fatty acid desaturation and polyunsaturated fatty acid composition of liver in salmonids: effects of dietary vegetable oil, 10.1016/s1096-4959(01)00429-8
  10. Castro L. Filipe C., Tocher Douglas R., Monroig Oscar, Long-chain polyunsaturated fatty acid biosynthesis in chordates: Insights into the evolution of Fads and Elovl gene repertoire, 10.1016/j.plipres.2016.01.001
  11. Gregory Melissa K., James Michael J., Rainbow trout (Oncorhynchus mykiss) Elovl5 and Elovl2 differ in selectivity for elongation of omega-3 docosapentaenoic acid, 10.1016/j.bbalip.2014.10.001
  12. Seiliez I, Panserat S, Kaushik S, Bergot P, Cloning, tissue distribution and nutritional regulation of a Δ6-desaturase-like enzyme in rainbow trout, 10.1016/s1096-4959(01)00410-9
  13. Abdul Hamid Noor Khalidah, Carmona-Antoñanzas Greta, Monroig Óscar, Tocher Douglas R., Turchini Giovanni M., Donald John A., Isolation and Functional Characterisation of a fads2 in Rainbow Trout (Oncorhynchus mykiss) with Δ5 Desaturase Activity, 10.1371/journal.pone.0150770
  14. Rollin Xavier, Peng Jinglan, Pham Diep, Ackman Robert G, Larondelle Yvan, The effects of dietary lipid and strain difference on polyunsaturated fatty acid composition and conversion in anadromous and landlocked salmon (Salmo salar L.) parr, 10.1016/s1096-4959(02)00264-6
  15. Aquaculture, 322–323, 99 (2011)
  16. Turchini G.M., Hermon K., Cleveland B.J., Emery J.A., Rankin T., Francis D.S., Seven fish oil substitutes over a rainbow trout grow-out cycle: I) Effects on performance and fatty acid metabolism, 10.1111/anu.12046
  17. Stubhaug Ingunn, Tocher Douglas R., Bell J. Gordon, Dick James R., Torstensen Bente E., Fatty acid metabolism in Atlantic salmon (Salmo salar L.) hepatocytes and influence of dietary vegetable oil, 10.1016/j.bbalip.2005.04.003
  18. Mellery Julie, Geay Florian, Tocher Douglas R., Kestemont Patrick, Debier Cathy, Rollin Xavier, Larondelle Yvan, Temperature Increase Negatively Affects the Fatty Acid Bioconversion Capacity of Rainbow Trout (Oncorhynchus mykiss) Fed a Linseed Oil-Based Diet, 10.1371/journal.pone.0164478
  19. Francis D. S., Thanuthong T., Senadheera S. P. S. D., Paolucci M., Coccia E., De Silva S. S., Turchini G. M., n-3 LC-PUFA deposition efficiency and appetite-regulating hormones are modulated by the dietary lipid source during rainbow trout grow-out and finishing periods, 10.1007/s10695-013-9868-5
  20. Turchini Giovanni M., Francis David S., Fatty acid metabolism (desaturation, elongation and β-oxidation) in rainbow trout fed fish oil- or linseed oil-based diets, 10.1017/s0007114508137874
  21. Thanuthong T., Francis D. S., Senadheera S. P. S. D., Jones P. L., Turchini G. M., LC-PUFA Biosynthesis in Rainbow Trout is Substrate Limited: Use of the Whole Body Fatty Acid Balance Method and Different 18:3n-3/18:2n-6 Ratios, 10.1007/s11745-011-3607-4
  22. J Nutr, 133, 2793 (2003)
  23. Bell J. Gordon, Henderson R. James, Tocher Douglas R., Sargent John R., Replacement of dietary fish oil with increasing levels of linseed oil: Modification of flesh fatty acid compositions in Atlantic salmon (Salmo salar) using a fish oil finishing diet, 10.1007/s11745-004-1223-5
  24. Schultz Sebastian, Koussoroplis Apostolos-Manuel, Changizi-Magrhoor Zhara, Watzke Jörg, Kainz Martin J, Fish oil-based finishing diets strongly increase long-chain polyunsaturated fatty acid concentrations in farm-raised common carp (Cyprinus carpioL.), 10.1111/are.12373
  25. Aquaculture, 372–375, 97 (2013)
  26. Mourente G., Bell J.G., Partial replacement of dietary fish oil with blends of vegetable oils (rapeseed, linseed and palm oils) in diets for European sea bass (Dicentrarchus labrax L.) over a long term growth study: Effects on muscle and liver fatty acid composition and effectiveness of a fish oil finishing diet, 10.1016/j.cbpb.2006.08.012
  27. Glencross B.D., Hawkins W.E., Curnow J.G., Restoration of the fatty acid composition of red seabream (Pagrus auratus) using a fish oil finishing diet after grow-out on plant oil based diets, 10.1046/j.1365-2095.2003.00272.x
  28. Turchini G.M., Francis D.S., Senadheera S.P.S.D., Thanuthong T., De Silva S.S., Fish oil replacement with different vegetable oils in Murray cod: Evidence of an “omega-3 sparing effect” by other dietary fatty acids, 10.1016/j.aquaculture.2011.02.016
  29. THANUTHONG T., FRANCIS D.S., SENADHEERA S.P.S.D., JONES P.L., TURCHINI G.M., Short-term food deprivation before a fish oil finishing strategy improves the deposition of n-3 LC-PUFA, but not the washing-out of C18 PUFA in rainbow trout : Food deprivation and finishing efficiency, 10.1111/j.1365-2095.2011.00909.x
  30. Thanuthong Thanongsak, Francis David S., Senadheera Shyamalie D., Jones Paul L., Turchini Giovanni M., Fish oil replacement in rainbow trout diets and total dietary PUFA content: I) Effects on feed efficiency, fat deposition and the efficiency of a finishing strategy, 10.1016/j.aquaculture.2011.08.007
  31. Vagner Marie, Robin Jean H., Zambonino-Infante José L., Tocher Douglas R., Person-Le Ruyet Jeannine, Ontogenic effects of early feeding of sea bass (Dicentrarchus labrax) larvae with a range of dietary n-3 highly unsaturated fatty acid levels on the functioning of polyunsaturated fatty acid desaturation pathways, 10.1017/s0007114508088053
  32. Vagner M., Zambonino Infante J.L., Robin J.H., Person-Le Ruyet J., Is it possible to influence European sea bass (Dicentrarchus labrax) juvenile metabolism by a nutritional conditioning during larval stage?, 10.1016/j.aquaculture.2007.01.031
  33. Geurden Inge, Borchert Peter, Balasubramanian Mukundh N., Schrama Johan W., Dupont-Nivet Mathilde, Quillet Edwige, Kaushik Sadasivam J., Panserat Stéphane, Médale Françoise, The Positive Impact of the Early-Feeding of a Plant-Based Diet on Its Future Acceptance and Utilisation in Rainbow Trout, 10.1371/journal.pone.0083162
  34. Bell Michael V, Dick James R, Changes in capacity to synthesise 22:6n−3 during early development in rainbow trout (Oncorhynchus mykiss), 10.1016/j.aquaculture.2003.09.007
  35. Rollin Xavier, Mambrini Muriel, Abboudi Tarik, Larondelle Yvan, Kaushik Sadasivam J., The optimum dietary indispensable amino acid pattern for growing Atlantic salmon (Salmo salar L.) fry, 10.1079/bjn2003973
  36. Choubert G., De la Noüe J., Luquet P., Digestibility in fish: Improved device for the automatic collection of feces, 10.1016/0044-8486(82)90048-5
  37. Official Methods of Analysis (1995)
  38. Nipp SuisGakk, 32, 502 (1966)
  39. J Biol Chem, 226, 497 (1957)
  40. Lipid Analysis (1982)
  41. Turchini Giovanni M, Francis David S, De Silva Sena S, Modification of tissue fatty acid composition in Murray cod (Maccullochella peelii peelii, Mitchell) resulting from a shift from vegetable oil diets to a fish oil diet, 10.1111/j.1365-2109.2006.01465.x
  42. Turchini Giovanni M., Francis David S., De Silva Sena S., A Whole Body, In Vivo, Fatty Acid Balance Method to Quantify PUFA Metabolism (Desaturation, Elongation and Beta-oxidation), 10.1007/s11745-007-3105-x
  43. Turchini Giovanni M., Francis David S., De Silva Sena S., A Whole Body, In Vivo, Fatty Acid Balance Method to Quantify PUFA Metabolism (Desaturation, Elongation and Beta-oxidation), 10.1007/s11745-008-3213-2
  44. Bransden Matthew P., Carter Chris G., Nichols Peter D., Replacement of fish oil with sunflower oil in feeds for Atlantic salmon (Salmo salar L.): effect on growth performance, tissue fatty acid composition and disease resistance, 10.1016/s1096-4959(03)00143-x
  45. Menoyo D., López-Bote C. J., Obach A., Bautista J. M., Effect of dietary fish oil substitution with linseed oil on the performance, tissue fatty acid profile, metabolism, and oxidative stability of Atlantic salmon, 10.2527/2005.83122853x
  46. Menoyo David, Diez Amalia, Lopez-Bote Clemente J., Casado Susana, Obach Alex, Bautista Jose M., Dietary fat type affects lipid metabolism in Atlantic salmon (Salmo salar L.) and differentially regulates glucose transporter GLUT4 expression in muscle, 10.1016/j.aquaculture.2006.07.018
  47. TURCHINI G.M., FRANCIS D.S., DE SILVA S.S., Finishing diets stimulate compensatory growth: results of a study on Murray cod, Maccullochella peelii peelii, 10.1111/j.1365-2095.2007.00483.x
  48. TORSTENSEN B, FROYLAND L, ORNSRUD R, LIE O, Tailoring of a cardioprotective muscle fatty acid composition of Atlantic salmon (Salmo salar) fed vegetable oils, 10.1016/j.foodchem.2004.01.009
  49. Francis David S., Peters Daniel J., Turchini Giovanni M., Apparent in Vivo Δ-6 Desaturase Activity, Efficiency, and Affinity Are Affected by Total Dietary C18PUFA in the Freshwater Fish Murray Cod, 10.1021/jf900094w
  50. Robin J.H, Regost C, Arzel J, Kaushik S.J, Fatty acid profile of fish following a change in dietary fatty acid source: model of fatty acid composition with a dilution hypothesis, 10.1016/s0044-8486(03)00296-5
  51. Trushenski Jesse T., Gause Brian, Lewis Heidi A., Selective Fatty Acid Metabolism, Not the Sequence of Dietary Fish Oil Intake, Prevails in Fillet Fatty Acid Profile Change in Sunshine Bass, 10.1080/15222055.2011.579029
  52. Trushenski Jesse T., Lewis Heidi A., Kohler Christopher C., Fatty Acid Profile of Sunshine Bass: I. Profile Change is Affected by Initial Composition and Differs Among Tissues, 10.1007/s11745-008-3188-z
  53. J Comp Physiol B, 156, 35 (1985)
  54. Ruyter B., Røjø C., Grisdale-Helland B., Rosenlund G., Obach A., Thomassen M. S., Influence of temperature and high dietary linoleic acid content on esterification, elongation, and desaturation of PUFA in atlantic salmon hepatocytes, 10.1007/s11745-003-1133-6
  55. Buzzi M., Henderson R.J., Sargent J.R., The desaturation and elongation of linolenic acid and eicosapentaenoic acid by hepatocytes and liver microsomes from rainbow trout (Oncorhynchus mykiss) fed diets containing fish oil or olive oil, 10.1016/0005-2760(95)00211-1
  56. Zheng Xiaozhong, Torstensen Bente E., Tocher Douglas R., Dick James R., Henderson R. James, Bell J. Gordon, Environmental and dietary influences on highly unsaturated fatty acid biosynthesis and expression of fatty acyl desaturase and elongase genes in liver of Atlantic salmon (Salmo salar), 10.1016/j.bbalip.2005.01.006
  57. Zheng Xiaozhong, Tocher Douglas R., Dickson Cathryn A., Bell J. Gordon, Teale Alan J., Highly unsaturated fatty acid synthesis in vertebrates: New insights with the cloning and characterization of a Δ6 desaturase of Atlantic salmon, 10.1007/s11745-005-1355-7
  58. Brown Jonathan E., A critical review of methods used to estimate linoleic acid ?6-desaturationex vivo andin vivo, 10.1002/ejlt.200401098
  59. Izquierdo M.S., Turkmen S., Montero D., Zamorano M.J., Afonso J.M., Karalazos V., Fernández-Palacios H., Nutritional programming through broodstock diets to improve utilization of very low fishmeal and fish oil diets in gilthead sea bream, 10.1016/j.aquaculture.2015.03.032
Bibliographic reference Mellery, Julie ; Brel, Jonathan ; Dort, Junio ; Geay, Florian ; KESTEMONT, Patrick ; et. al. A n-3 PUFA depletion applied to rainbow trout fry (Oncorhynchus mykiss) does not modulate its subsequent lipid bioconversion capacity. In: British Journal of Nutrition, Vol. 117, no. 2, p. 187-199 (2016)
Permanent URL http://hdl.handle.net/2078.1/181944