Chen, W.
[Lawrence Berkeley National Laboratory, Berkeley, CA, USA]
Pöhls, Jan-Hendrik
[Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Canada]
Hautier, Geoffroy
[UCL]
Broberg, Danny
[Department of Materials Science and Engineering, University of California, Berkeley, USA]
Bajaj, Saurabh
[Lawrence Berkeley National Laboratory, Berkeley, CA, USA]
Aydemir, Umut
[Materials Science, California Institute of Technology, Pasadena, USA]
Gibbs, Zachary M.
[Materials Science, California Institute of Technology, Pasadena, USA]
Zhu, Hong
[University of Michigan - Shangai Jiao Tong University Joint Institute, Shngai, China]
Asta, Mark
[Department of Materials Science and Engineering, University of California, Berkeley, USA]
Snyder, G. Jeffrey
[Materials Science, California Institute of Technology, Pasadena, USA]
Meredig, Bryce
[Citrine Informatics, Redwood City, USA]
White, Mary Anne
[Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Canada]
Persson, Kristin
[Lawrence Berkeley National Laboratory, Berkeley, CA, USA]
Jain, Anubhav
[Lawrence Berkeley National Laboratory, Berkeley, CA, USA]
We present an overview and preliminary analysis of computed thermoelectric properties for more than 48 000 inorganic compounds from the Materials Project (MP). We compare our calculations with available experimental data to evaluate the accuracy of different approximations in predicting thermoelectric properties. We observe fair agreement between experiment and computation for the maximum Seebeck coefficient determined with MP band structures and the BoltzTraP code under a constant relaxation time approximation (R2 = 0.79). We additionally find that scissoring the band gap to the experimental value improves the agreement. We find that power factors calculated with a constant and universal relaxation time approximation show much poorer agreement with experiment (R2 = 0.33). We test two minimum thermal conductivity models (Clarke and Cahill–Pohl), finding that both these models reproduce measured values fairly accurately (R2 = 0.82) using parameters obtained from computation. Additionally, we analyze this data set to gain broad insights into the effects of chemistry, crystal structure, and electronic structure on thermoelectric properties. For example, our computations indicate that oxide band structures tend to produce lower power factors than those of sulfides, selenides, and tellurides, even under the same doping and relaxation time constraints. We also list families of compounds identified to possess high valley degeneracies. Finally, we present a clustering analysis of our results. We expect that these studies should help guide and assess future high-throughput computational screening studies of thermoelectric materials.
Sootsman Joseph R., Chung Duck Young, Kanatzidis Mercouri G., New and Old Concepts in Thermoelectric Materials, 10.1002/anie.200900598
H. Wang , Y.Pei , A. D.Lalonde and G. J.Snyder , Thermoelectric Nanomaterials , Springer Berlin Heidelberg , Berlin, Heidelberg , 2013 , vol. 182
Snyder G. Jeffrey, Toberer Eric S., Complex thermoelectric materials, 10.1038/nmat2090
Zhu Hong, Sun Wenhao, Armiento Rickard, Lazic Predrag, Ceder Gerbrand, Band structure engineering through orbital interaction for enhanced thermoelectric power factor, 10.1063/1.4866861
Thorgilsson Gunnar, Egues J. Carlos, Loss Daniel, Erlingsson Sigurdur I., Rashba spin orbit interaction in a quantum wire superlattice, 10.1103/physrevb.85.045306
Ong Khuong P., Singh David J., Wu Ping, Analysis of the thermoelectric properties ofn-type ZnO, 10.1103/physrevb.83.115110
Bhattacharya Sandip, Madsen Georg K. H., High-throughput exploration of alloying as design strategy for thermoelectrics, 10.1103/physrevb.92.085205
Bera Chandan, Jacob Stephane, Opahle Ingo, Gunda N. S. Harsha, Chmielowski Radoslaw, Dennler Gilles, Madsen Georg K. H., Integrated computational materials discovery of silver doped tin sulfide as a thermoelectric material, 10.1039/c4cp02871f
Madsen Georg K. H., Automated Search for New Thermoelectric Materials: The Case of LiZnSb, 10.1021/ja062526a
Wang, Phys. Rev. X, 1, 021012 (2011)
Carrete, Phys. Rev. X, 4, 011019 (2014)
Joshi Giri, He Ran, Engber Michael, Samsonidze Georgy, Pantha Tej, Dahal Ekraj, Dahal Keshab, Yang Jian, Lan Yucheng, Kozinsky Boris, Ren Zhifeng, NbFeSb-based p-type half-Heuslers for power generation applications, 10.1039/c4ee02180k
Gorai Prashun, Parilla Philip, Toberer Eric S., Stevanović Vladan, Computational Exploration of the Binary A1B1Chemical Space for Thermoelectric Performance, 10.1021/acs.chemmater.5b01179
Gorai Prashun, Gao Duanfeng, Ortiz Brenden, Miller Sam, Barnett Scott A., Mason Thomas, Lv Qin, Stevanović Vladan, Toberer Eric S., TE Design Lab: A virtual laboratory for thermoelectric material design, 10.1016/j.commatsci.2015.11.006
Zhu Hong, Hautier Geoffroy, Aydemir Umut, Gibbs Zachary M., Li Guodong, Bajaj Saurabh, Pöhls Jan-Hendrik, Broberg Danny, Chen Wei, Jain Anubhav, White Mary Anne, Asta Mark, Snyder G. Jeffrey, Persson Kristin, Ceder Gerbrand, Computational and experimental investigation of TmAgTe2and XYZ2compounds, a new group of thermoelectric materials identified by first-principles high-throughput screening, 10.1039/c5tc01440a
Madsen Georg K.H., Singh David J., BoltzTraP. A code for calculating band-structure dependent quantities, 10.1016/j.cpc.2006.03.007
Ong Shyue Ping, Richards William Davidson, Jain Anubhav, Hautier Geoffroy, Kocher Michael, Cholia Shreyas, Gunter Dan, Chevrier Vincent L., Persson Kristin A., Ceder Gerbrand, Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis, 10.1016/j.commatsci.2012.10.028
Jain Anubhav, Ong Shyue Ping, Chen Wei, Medasani Bharat, Qu Xiaohui, Kocher Michael, Brafman Miriam, Petretto Guido, Rignanese Gian-Marco, Hautier Geoffroy, Gunter Daniel, Persson Kristin A., FireWorks: a dynamic workflow system designed for high-throughput applications : FireWorks: A Dynamic Workflow System Designed for High-Throughput Applications, 10.1002/cpe.3505
Kresse G., Furthmüller J., Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set, 10.1103/physrevb.54.11169
Perdew John P., Burke Kieron, Ernzerhof Matthias, Generalized Gradient Approximation Made Simple, 10.1103/physrevlett.77.3865
Kresse G., Joubert D., From ultrasoft pseudopotentials to the projector augmented-wave method, 10.1103/physrevb.59.1758
Setyawan Wahyu, Curtarolo Stefano, High-throughput electronic band structure calculations: Challenges and tools, 10.1016/j.commatsci.2010.05.010
Jain Anubhav, Ong Shyue Ping, Hautier Geoffroy, Chen Wei, Richards William Davidson, Dacek Stephen, Cholia Shreyas, Gunter Dan, Skinner David, Ceder Gerbrand, Persson Kristin A., Commentary: The Materials Project: A materials genome approach to accelerating materials innovation, 10.1063/1.4812323
Belsky Alec, Hellenbrandt Mariette, Karen Vicky Lynn, Luksch Peter, New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design, 10.1107/s0108768102006948
Bergerhoff G., Hundt R., Sievers R., Brown I. D., The inorganic crystal structure data base, 10.1021/ci00038a003
Jain Anubhav, Hautier Geoffroy, Moore Charles J., Ping Ong Shyue, Fischer Christopher C., Mueller Tim, Persson Kristin A., Ceder Gerbrand, A high-throughput infrastructure for density functional theory calculations, 10.1016/j.commatsci.2011.02.023
Saal James E., Kirklin Scott, Aykol Muratahan, Meredig Bryce, Wolverton C., Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD), 10.1007/s11837-013-0755-4
S. Hébert and A.Maignan , Functional Oxides , John Wiley & Sons, Ltd , 2010 , pp. 203–255
Bocher L., Aguirre M. H., Logvinovich D., Shkabko A., Robert R., Trottmann M., Weidenkaff A., CaMn1−xNbxO3(x≤ 0.08) Perovskite-Type Phases As Promising New High-Temperaturen-Type Thermoelectric Materials, 10.1021/ic800463s
Setyawan Wahyu, Gaume Romain M., Lam Stephanie, Feigelson Robert S., Curtarolo Stefano, High-Throughput Combinatorial Database of Electronic Band Structures for Inorganic Scintillator Materials, 10.1021/co200012w
Hirschman, Am. Econ. Rev., 54, 761 (1964)
Gaultois Michael W., Sparks Taylor D., Borg Christopher K. H., Seshadri Ram, Bonificio William D., Clarke David R., Data-Driven Review of Thermoelectric Materials: Performance and Resource Considerations, 10.1021/cm400893e
U.S. Department of Justice and the Federal Trade Commission, Horizontal Merger Guidelines , 2010
Heremans J. P., Jovovic V., Toberer E. S., Saramat A., Kurosaki K., Charoenphakdee A., Yamanaka S., Snyder G. J., Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States, 10.1126/science.1159725
Maris Humphrey J., Tamura Shin-ichiro, Anharmonic decay and the propagation of phonons in an isotopically pure crystal at low temperatures: Application to dark-matter detection, 10.1103/physrevb.47.727
O'Keefe Michael, Brese N. E., Atom sizes and bond lengths in molecules and crystals, 10.1021/ja00009a002
Pei Yanzhong, Shi Xiaoya, LaLonde Aaron, Wang Heng, Chen Lidong, Snyder G. Jeffrey, Convergence of electronic bands for high performance bulk thermoelectrics, 10.1038/nature09996
Tian Zhiting, Lee Sangyeop, Chen Gang, Heat Transfer in Thermoelectric Materials and Devices, 10.1115/1.4023585
Pei Yanzhong, Wang Heng, Snyder G. J., Thermoelectric Materials: Band Engineering of Thermoelectric Materials (Adv. Mater. 46/2012), 10.1002/adma.201290290
Yan Jun, Gorai Prashun, Ortiz Brenden, Miller Sam, Barnett Scott A., Mason Thomas, Stevanović Vladan, Toberer Eric S., Material descriptors for predicting thermoelectric performance, 10.1039/c4ee03157a
Grosse-Kunstleve R. W., Algorithms for deriving crystallographic space-group information, 10.1107/s0108767398010186
Grosse-Kunstleve Ralf W., Sauter Nicholas K., Moriarty Nigel W., Adams Paul D., TheComputational Crystallography Toolbox: crystallographic algorithms in a reusable software framework, 10.1107/s0021889801017824
Fu Chenguang, Bai Shengqiang, Liu Yintu, Tang Yunshan, Chen Lidong, Zhao Xinbing, Zhu Tiejun, Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials, 10.1038/ncomms9144
Rausch Elisabeth, Balke Benjamin, Stahlhofen Jana Marie, Ouardi Siham, Burkhardt Ulrich, Felser Claudia, Fine tuning of thermoelectric performance in phase-separated half-Heusler compounds, 10.1039/c5tc01196e
Gonze Xavier, Lee Changyol, Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory, 10.1103/physrevb.55.10355
Levine Zachary H., Allan Douglas C., Linear optical response in silicon and germanium including self-energy effects, 10.1103/physrevlett.63.1719
Kim Sunphil, Wiendlocha Bartlomiej, Jin Hyungyu, Tobola Janusz, Heremans Joseph P., Electronic structure and thermoelectric properties of p-type Ag-doped Mg2Sn and Mg2Sn1-xSix (x = 0.05, 0.1), 10.1063/1.4898013
Vazquez F., Forman Richard A., Cardona Manuel, Electroreflectance Measurements onMg2Si,Mg2Ge, andMg2Sn, 10.1103/physrev.176.905
Blunt R. F., Frederikse H. P. R., Hosler W. R., Electrical and Optical Properties of Intermetallic Compounds. IV. Magnesium Stannide, 10.1103/physrev.100.663
May Andrew F., Toberer Eric S., Saramat Ali, Snyder G. Jeffrey, Characterization and analysis of thermoelectric transport inn-typeBa8Ga16−xGe30+x, 10.1103/physrevb.80.125205
G. Samsonidze , B.Kozinsky , 2015, arXiv, 1511.08115
Aydemir Umut, Zevalkink Alex, Ormeci Alim, Gibbs Zachary M., Bux Sabah, Snyder G. Jeffrey, Thermoelectric Enhancement in BaGa2Sb2by Zn Doping, 10.1021/cm5042937
Johnson Samantha I., Zevalkink Alex, Snyder G. Jeffrey, Improved thermoelectric properties in Zn-doped Ca5Ga2Sb6, 10.1039/c3ta00844d
Liufu Sheng-Cong, Chen Li-Dong, Yao Qin, Wang Chun-Fen, Assembly of one-dimensional nanorods into Bi2S3 films with enhanced thermoelectric transport properties, 10.1063/1.2712504
Hautier Geoffroy, Miglio Anna, Waroquiers David, Rignanese Gian-Marco, Gonze Xavier, How Does Chemistry Influence Electron Effective Mass in Oxides? A High-Throughput Computational Analysis, 10.1021/cm404079a
Hautier Geoffroy, Miglio Anna, Ceder Gerbrand, Rignanese Gian-Marco, Gonze Xavier, Identification and design principles of low hole effective mass p-type transparent conducting oxides, 10.1038/ncomms3292
Persson Clas, Mirbt Susanne, Improved electronic structure and optical properties of sp-hybridized semiconductors using LDA+U SIC, 10.1590/s0103-97332006000300014
Tran Fabien, Blaha Peter, Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential, 10.1103/physrevlett.102.226401
Heyd Jochen, Scuseria Gustavo E., Ernzerhof Matthias, Hybrid functionals based on a screened Coulomb potential, 10.1063/1.1564060
Xie Hanhui, Wang Heng, Fu Chenguang, Liu Yintu, Snyder G. Jeffrey, Zhao Xinbing, Zhu Tiejun, The intrinsic disorder related alloy scattering in ZrNiSn half-Heusler thermoelectric materials, 10.1038/srep06888
Bulusu A., Walker D.G., Review of electronic transport models for thermoelectric materials, 10.1016/j.spmi.2008.02.008
Scheidemantel T. J., Ambrosch-Draxl C., Thonhauser T., Badding J. V., Sofo J. O., Transport coefficients from first-principles calculations, 10.1103/physrevb.68.125210
Schulz Werner W., Allen Philip B., Trivedi Nandini, Hall coefficient of cubic metals, 10.1103/physrevb.45.10886
Broido D. A., Malorny M., Birner G., Mingo Natalio, Stewart D. A., Intrinsic lattice thermal conductivity of semiconductors from first principles, 10.1063/1.2822891
Toberer Eric S., Zevalkink Alex, Snyder G. Jeffrey, Phonon engineering through crystal chemistry, 10.1039/c1jm11754h
Clarke David R., Materials selection guidelines for low thermal conductivity thermal barrier coatings, 10.1016/s0257-8972(02)00593-5
Cahill David G., Braun Paul V., Chen Gang, Clarke David R., Fan Shanhui, Goodson Kenneth E., Keblinski Pawel, King William P., Mahan Gerald D., Majumdar Arun, Maris Humphrey J., Phillpot Simon R., Pop Eric, Shi Li, Nanoscale thermal transport. II. 2003–2012, 10.1063/1.4832615
de Jong Maarten, Chen Wei, Angsten Thomas, Jain Anubhav, Notestine Randy, Gamst Anthony, Sluiter Marcel, Krishna Ande Chaitanya, van der Zwaag Sybrand, Plata Jose J, Toher Cormac, Curtarolo Stefano, Ceder Gerbrand, Persson Kristin A., Asta Mark, Charting the complete elastic properties of inorganic crystalline compounds, 10.1038/sdata.2015.9
Chiritescu C., Cahill D. G., Nguyen N., Johnson D., Bodapati A., Keblinski P., Zschack P., Ultralow Thermal Conductivity in Disordered, Layered WSe2 Crystals, 10.1126/science.1136494
Pöhls Jan-Hendrik, Johnson Michel B., White Mary Anne, Origins of ultralow thermal conductivity in bulk [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), 10.1039/c5cp06575e
M. Ester , H. P.Kriegel , J.Sander and X.Xu , Second International Conference on Knowledge Discovery and Data Mining , 1996, pp. 226–231
Hartigan J. A., Wong M. A., Algorithm AS 136: A K-Means Clustering Algorithm, 10.2307/2346830
Van Der Maaten, J. Mach. Learn. Res., 9, 2579 (2008)
Zhao Li-Dong, Lo Shih-Han, Zhang Yongsheng, Sun Hui, Tan Gangjian, Uher Ctirad, Wolverton C., Dravid Vinayak P., Kanatzidis Mercouri G., Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals, 10.1038/nature13184
Lu Xu, Morelli Donald T., Xia Yi, Zhou Fei, Ozolins Vidvuds, Chi Hang, Zhou Xiaoyuan, Uher Ctirad, High Performance Thermoelectricity in Earth-Abundant Compounds Based on Natural Mineral Tetrahedrites, 10.1002/aenm.201200650
He Ying, Day Tristan, Zhang Tiansong, Liu Huili, Shi Xun, Chen Lidong, Snyder G. Jeffrey, High Thermoelectric Performance in Non-Toxic Earth-Abundant Copper Sulfide, 10.1002/adma.201400515
Gonçalves Antonio P., Godart Claude, New promising bulk thermoelectrics: intermetallics, pnictides and chalcogenides, 10.1140/epjb/e2014-40989-3
Wang Hanfu, Chu Weiguo, Jin Hao, Theoretical study on thermoelectric properties of Mg2Si and comparison to experiments, 10.1016/j.commatsci.2012.03.039
Yang Jiong, Li Huanming, Wu Ting, Zhang Wenqing, Chen Lidong, Yang Jihui, Evaluation of Half-Heusler Compounds as Thermoelectric Materials Based on the Calculated Electrical Transport Properties, 10.1002/adfm.200701369
Heyd Jochen, Peralta Juan E., Scuseria Gustavo E., Martin Richard L., Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional, 10.1063/1.2085170
Heyd Jochen, Scuseria Gustavo E., Ernzerhof Matthias, Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)], 10.1063/1.2204597
Pizzi Giovanni, Volja Dmitri, Kozinsky Boris, Fornari Marco, Marzari Nicola, BoltzWann: A code for the evaluation of thermoelectric and electronic transport properties with a maximally-localized Wannier functions basis, 10.1016/j.cpc.2013.09.015
Toher Cormac, Plata Jose J., Levy Ohad, de Jong Maarten, Asta Mark, Nardelli Marco Buongiorno, Curtarolo Stefano, High-throughput computational screening of thermal conductivity, Debye temperature, and Grüneisen parameter using a quasiharmonic Debye model, 10.1103/physrevb.90.174107
Blanco M.A., Francisco E., Luaña V., GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model, 10.1016/j.comphy.2003.12.001
Madsen Georg K. H., Santi Gilles, Anharmonic lattice dynamics in type-I clathrates from first-principles calculations, 10.1103/physrevb.72.220301
Seko Atsuto, Togo Atsushi, Hayashi Hiroyuki, Tsuda Koji, Chaput Laurent, Tanaka Isao, Prediction of Low-Thermal-Conductivity Compounds with First-Principles Anharmonic Lattice-Dynamics Calculations and Bayesian Optimization, 10.1103/physrevlett.115.205901
Zhou Fei, Nielson Weston, Xia Yi, Ozoliņš Vidvuds, Lattice Anharmonicity and Thermal Conductivity from Compressive Sensing of First-Principles Calculations, 10.1103/physrevlett.113.185501
Ohta Shingo, Nomura Takashi, Ohta Hiromichi, Hirano Masahiro, Hosono Hideo, Koumoto Kunihito, Large thermoelectric performance of heavily Nb-doped SrTiO3 epitaxial film at high temperature, 10.1063/1.2035889
Lee Soonil, Wilke Rudeger H. T., Trolier-McKinstry Susan, Zhang Shujun, Randall Clive A., SrxBa1−xNb2O6−δ Ferroelectric-thermoelectrics: Crystal anisotropy, conduction mechanism, and power factor, 10.1063/1.3291563
Funahashi Ryoji, Matsubara Ichiro, Ikuta Hiroshi, Takeuchi Tsunehiro, Mizutani Uichiro, Sodeoka Satoshi, An Oxide Single Crystal with High Thermoelectric Performance in Air, 10.1143/jjap.39.l1127
Funahashi Ryoji, Shikano Masahiro, Bi2Sr2Co2Oy whiskers with high thermoelectric figure of merit, 10.1063/1.1502190
Shikano Masahiro, Funahashi Ryoji, Electrical and thermal properties of single-crystalline (Ca2CoO3)0.7CoO2 with a Ca3Co4O9 structure, 10.1063/1.1562337