User menu

The role of membranes in post-combustion CO2 capture

Bibliographic reference Luis Alconero, Patricia ; Van Der Bruggen, Bart. The role of membranes in post-combustion CO2 capture. In: Greenhouse Gases: science and technology, Vol. 3, no. 5, p. 318-337 (2013)
Permanent URL http://hdl.handle.net/2078.1/169707
  1. Neftel A., Moor E., Oeschger H., Stauffer B., Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries, 10.1038/315045a0
  2. Etheridge D. M., Steele L. P., Langenfelds R. L., Francey R. J., Barnola J.-M., Morgan V. I., Natural and anthropogenic changes in atmospheric CO2over the last 1000 years from air in Antarctic ice and firn, 10.1029/95jd03410
  3. Stocker T. F., Indermhle A., Joos F., Fischer H., Smith H. J., Wahlen M., Deck B., Mastroianni D., Tschumi J., Blunier T., Meyer R., Stauffer B., 10.1038/18158
  4. IPCC, 2001: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change [Houghton JT et al. (eds.)], 881 (2001)
  5. Solomon, Contribution of Working Group I to the Fourth assessment report of the intergovernmental Panel on Climate Change (2007)
  6. Aaron Douglas, Tsouris Costas, Separation of CO2from Flue Gas: A Review, 10.1081/ss-200042244
  7. Steeneveldt R., Berger B., Torp T.A., CO2 Capture and Storage, 10.1205/cherd05049
  8. Figueroa José D., Fout Timothy, Plasynski Sean, McIlvried Howard, Srivastava Rameshwar D., Advances in CO2 capture technology—The U.S. Department of Energy's Carbon Sequestration Program, 10.1016/s1750-5836(07)00094-1
  9. Shukla Richa, Ranjith Pathegama, Haque Asadul, Choi Xavier, A review of studies on CO2 sequestration and caprock integrity, 10.1016/j.fuel.2010.05.012
  10. Harvey Omar R., Qafoku Nikolla P., Cantrell Kirk J., Lee Giehyeon, Amonette James E., Brown Christopher F., Geochemical Implications of Gas Leakage associated with Geologic CO2Storage—A Qualitative Review, 10.1021/es3029457
  11. Ghoniem Ahmed F., Needs, resources and climate change: Clean and efficient conversion technologies, 10.1016/j.pecs.2010.02.006
  12. Kuramochi Takeshi, Ramírez Andrea, Turkenburg Wim, Faaij André, Comparative assessment of CO2 capture technologies for carbon-intensive industrial processes, 10.1016/j.pecs.2011.05.001
  13. Climate Change 2007: Synthesis Report Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 104 (2007)
  14. Bara Jason E., What chemicals will we need to capture CO2?, 10.1002/ghg.1279
  15. Chapel, Recovery of CO2 from Flue Gases: Commercial Trends (1999)
  16. Bottoms RR Separating acidic gases 1930
  17. Ebner Armin D., Ritter James A., State-of-the-art Adsorption and Membrane Separation Processes for Carbon Dioxide Production from Carbon Dioxide Emitting Industries, 10.1080/01496390902733314
  18. Olajire Abass A., CO2 capture and separation technologies for end-of-pipe applications – A review, 10.1016/j.energy.2010.02.030
  19. Rao Anand B., Rubin Edward S., A Technical, Economic, and Environmental Assessment of Amine-Based CO2Capture Technology for Power Plant Greenhouse Gas Control, 10.1021/es0158861
  20. Favre Eric, Membrane processes and postcombustion carbon dioxide capture: Challenges and prospects, 10.1016/j.cej.2011.01.010
  21. Gabelman Alan, Hwang Sun-Tak, Hollow fiber membrane contactors, 10.1016/s0376-7388(99)00040-x
  22. Oexmann Jochen, Kather Alfons, Linnenberg Sebastian, Liebenthal Ulrich, Post-combustion CO2 capture: chemical absorption processes in coal-fired steam power plants, 10.1002/ghg.1273
  23. Cousins Ashleigh, Cottrell Aaron, Lawson Anthony, Huang Sanger, Feron Paul H.M., Model verification and evaluation of the rich-split process modification at an Australian-based post combustion CO2capture pilot plant, 10.1002/ghg.1295
  24. Drummond Michael L., Cundari Thomas R., Wilson Angela K., Protein-based carbon capture: progress and potential, 10.1002/ghg.1287
  25. Seader, Separation Process Principles (2005)
  26. Perry, Perry's Chemical Engineers’ Handbook (1997)
  27. Yu Hai, Xiang Qunyang, Fang Mengxiang, Yang Qi, Feron Paul, Promoted CO2 absorption in aqueous ammonia, 10.1002/ghg.1280
  28. Tan L.S., Shariff A.M., Lau K.K., Bustam M.A., Factors affecting CO2 absorption efficiency in packed column: A review, 10.1016/j.jiec.2012.05.013
  29. Oexmann Jochen, Hensel Christian, Kather Alfons, Post-combustion CO2-capture from coal-fired power plants: Preliminary evaluation of an integrated chemical absorption process with piperazine-promoted potassium carbonate, 10.1016/j.ijggc.2008.04.002
  30. Freeman Stephanie A., Dugas Ross, Van Wagener David H., Nguyen Thu, Rochelle Gary T., Carbon dioxide capture with concentrated, aqueous piperazine, 10.1016/j.ijggc.2009.10.008
  31. Yildirim Ömer, Kiss Anton A., Hüser Nicole, Leßmann Katharina, Kenig Eugeny Y., Reactive absorption in chemical process industry: A review on current activities, 10.1016/j.cej.2012.09.121
  32. Earle Martyn J., Seddon Kenneth R., Ionic liquids. Green solvents for the future, 10.1351/pac200072071391
  33. Hasib-ur-Rahman M., Siaj M., Larachi F., Ionic liquids for CO2 capture—Development and progress, 10.1016/j.cep.2010.03.008
  34. Zhang Jianmin, Sun Jian, Zhang Xiaochun, Zhao Yansong, Zhang Suojiang, The recent development of CO2 fixation and conversion by ionic liquid, 10.1002/ghg.13
  35. Ramdin Mahinder, de Loos Theo W., Vlugt Thijs J.H., State-of-the-Art of CO2Capture with Ionic Liquids, 10.1021/ie3003705
  36. Zhang Xiangping, Zhang Xiaochun, Dong Haifeng, Zhao Zhijun, Zhang Suojiang, Huang Ying, Carbon capture with ionic liquids: overview and progress, 10.1039/c2ee21152a
  37. Anthony Jennifer L., Anderson Jessica L., Maginn Edward J., Brennecke Joan F., Anion Effects on Gas Solubility in Ionic Liquids, 10.1021/jp046404l
  38. Zhang Xiaochun, Liu Zhiping, Wang Wenchuan, Screening of ionic liquids to capture CO2by COSMO-RS and experiments, 10.1002/aic.11573
  39. Bernot Randall J., Kennedy Erin E., Lamberti Gary A., EFFECTS OF IONIC LIQUIDS ON THE SURVIVAL, MOVEMENT, AND FEEDING BEHAVIOR OF THE FRESHWATER SNAIL, PHYSA ACUTA, 10.1897/04-614r.1
  40. Wells Andrew S., Coombe Vyvyan T., On the Freshwater Ecotoxicity and Biodegradation Properties of Some Common Ionic Liquids, 10.1021/op060048i
  41. Luis P., Ortiz I., Aldaco R., Irabien A., A novel group contribution method in the development of a QSAR for predicting the toxicity (Vibrio fischeri EC50) of ionic liquids, 10.1016/j.ecoenv.2006.06.010
  42. YONG Z, MATA V, RODRIGUES A, Adsorption of carbon dioxide at high temperature—a review, 10.1016/s1383-5866(01)00165-4
  43. Wang Qiang, Luo Jizhong, Zhong Ziyi, Borgna Armando, CO2 capture by solid adsorbents and their applications: current status and new trends, 10.1039/c0ee00064g
  44. Samanta Arunkumar, Zhao An, Shimizu George K. H., Sarkar Partha, Gupta Rajender, Post-Combustion CO2Capture Using Solid Sorbents: A Review, 10.1021/ie200686q
  45. Yang, J Environ Sci, 20, 14 (2008)
  46. Thiruvenkatachari Ramesh, Su Shi, An Hui, Yu Xin Xiang, Post combustion CO2 capture by carbon fibre monolithic adsorbents, 10.1016/j.pecs.2009.05.003
  47. De Silva P.N.K., Ranjith P.G., Choi S.K., A study of methodologies for CO2 storage capacity estimation of coal, 10.1016/j.fuel.2011.07.010
  48. Lee Zhi Hua, Lee Keat Teong, Bhatia Subhash, Mohamed Abdul Rahman, Post-combustion carbon dioxide capture: Evolution towards utilization of nanomaterials, 10.1016/j.rser.2012.01.077
  49. Radosz Maciej, Hu Xudong, Krutkramelis Kaspars, Shen Youqing, Flue-Gas Carbon Capture on Carbonaceous Sorbents:  Toward a Low-Cost Multifunctional Carbon Filter for “Green” Energy Producers†, 10.1021/ie0707974
  50. Gray M.L., Champagne K.J., Fauth D., Baltrus J.P., Pennline Henry, Performance of immobilized tertiary amine solid sorbents for the capture of carbon dioxide, 10.1016/s1750-5836(07)00088-6
  51. Li Jian-Rong, Ma Yuguang, McCarthy M. Colin, Sculley Julian, Yu Jiamei, Jeong Hae-Kwon, Balbuena Perla B., Zhou Hong-Cai, Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks, 10.1016/j.ccr.2011.02.012
  52. Liu Jian, Thallapally Praveen K., McGrail B. Peter, Brown Daryl R., Liu Jun, Progress in adsorption-based CO2capture by metal–organic frameworks, 10.1039/c1cs15221a
  53. Fauth Daniel J., Frommell Elizabeth A., Hoffman James S., Reasbeck Randall P., Pennline Henry W., Eutectic salt promoted lithium zirconate: Novel high temperature sorbent for CO2 capture, 10.1016/j.fuproc.2005.01.012
  54. Kato Masahiro, Nakagawa Kazuaki, Essaki Kenji, Maezawa Yukishige, Takeda Shin, Kogo Ryosuke, Hagiwara Yoshikazu, Novel CO2 Absorbents Using Lithium-Containing Oxide, 10.1111/j.1744-7402.2005.02047.x
  55. Stolaroff Joshuah K., Lowry Gregory V., Keith David W., Using CaO- and MgO-rich industrial waste streams for carbon sequestration, 10.1016/j.enconman.2004.05.009
  56. Santos Rafael M., Van Gerven Tom, Process intensification routes for mineral carbonation*, 10.1002/ghg.36
  57. Bobicki Erin R., Liu Qingxia, Xu Zhenghe, Zeng Hongbo, Carbon capture and storage using alkaline industrial wastes, 10.1016/j.pecs.2011.11.002
  58. Kaithwas Aveen, Prasad Murari, Kulshreshtha Ankita, Verma Sanjay, Industrial wastes derived solid adsorbents for CO2 capture: A mini review, 10.1016/j.cherd.2012.02.011
  59. Jones Christopher W., CO2Capture from Dilute Gases as a Component of Modern Global Carbon Management, 10.1146/annurev-chembioeng-061010-114252
  60. Bae Youn-Sang, Snurr Randall Q., Development and Evaluation of Porous Materials for Carbon Dioxide Separation and Capture, 10.1002/anie.201101891
  61. Olah George A., Goeppert Alain, Prakash G. K. Surya, Chemical Recycling of Carbon Dioxide to Methanol and Dimethyl Ether: From Greenhouse Gas to Renewable, Environmentally Carbon Neutral Fuels and Synthetic Hydrocarbons, 10.1021/jo801260f
  62. Taheri Najafabadi Amin, CO2chemical conversion to useful products: An engineering insight to the latest advances toward sustainability : CO2chemical conversion to useful products, 10.1002/er.3021
  63. Schneider Jacob, Jia Hongfei, Muckerman James T., Fujita Etsuko, Thermodynamics and kinetics of CO2, CO, and H+ binding to the metal centre of CO2reductioncatalysts, 10.1039/c1cs15278e
  64. Song Chunshan, Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing, 10.1016/j.cattod.2006.02.029
  65. Wang Huan, Wu La-Xia, Zhao Jian-Qing, Li Rui-Na, Zhang Ai-Jian, Kajiura Hisashi, Li Yong-Ming, Lu Jia-Xing, Synthesis of cyclic carbonates from CO2 and diols via electrogenerated cyanomethyl anion, 10.1002/ghg.42
  66. Sakakura Toshiyasu, Kohno Kazufumi, The synthesis of organic carbonates from carbon dioxide, 10.1039/b819997c
  67. Riduan Siti Nurhanna, Zhang Yugen, Recent developments in carbon dioxide utilization under mild conditions, 10.1039/b920163g
  68. Freund H.-J., Roberts M.W., Surface chemistry of carbon dioxide, 10.1016/s0167-5729(96)00007-6
  69. Takeda Hiroyuki, Ishitani Osamu, Development of efficient photocatalytic systems for CO2 reduction using mononuclear and multinuclear metal complexes based on mechanistic studies, 10.1016/j.ccr.2009.09.030
  70. Richardson Robert D., Holland Edward J., Carpenter Barry K., A renewable amine for photochemical reduction of CO2, 10.1038/nchem.1000
  71. Windle Christopher D., Perutz Robin N., Advances in molecular photocatalytic and electrocatalytic CO2 reduction, 10.1016/j.ccr.2012.03.010
  72. Izumi Yasuo, Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond, 10.1016/j.ccr.2012.04.018
  73. Costentin Cyrille, Robert Marc, Savéant Jean-Michel, Catalysis of the electrochemical reduction of carbon dioxide, 10.1039/c2cs35360a
  74. Glueck Silvia M., Gümüs Selcuc, Fabian Walter M. F., Faber Kurt, Biocatalytic carboxylation, 10.1039/b807875k
  75. Skjånes Kari, Lindblad Peter, Muller Jiri, BioCO2 – A multidisciplinary, biological approach using solar energy to capture CO2 while producing H2 and high value products, 10.1016/j.bioeng.2007.06.002
  76. Jones Carla S, Mayfield Stephen P, Algae biofuels: versatility for the future of bioenergy, 10.1016/j.copbio.2011.10.013
  77. Stanmore B.R., Gilot P., Review—calcination and carbonation of limestone during thermal cycling for CO2 sequestration, 10.1016/j.fuproc.2005.01.023
  78. Anthony E. J. Ben, Ca looping technology: current status, developments and future directions, 10.1002/ghg3.2
  79. SILABAN A., HARRISON D. P., HIGH TEMPERATURE CAPTURE OF CARBON DIOXIDE: CHARACTERISTICS OF THE REVERSIBLE REACTION BETWEEN CaO(s) and CO2(g), 10.1080/00986449508936375
  80. Blamey J., Anthony E.J., Wang J., Fennell P.S., The calcium looping cycle for large-scale CO2 capture, 10.1016/j.pecs.2009.10.001
  81. Darroudi Taghi, Searcy Alan W., Effect of carbon dioxide pressure on the rate of decomposition of calcite (CaCO3), 10.1021/j150626a004
  82. Abanades Juan Carlos, The maximum capture efficiency of CO2 using a carbonation/calcination cycle of CaO/CaCO3, 10.1016/s1385-8947(02)00126-2
  83. Fennell Paul S., Pacciani Roberta, Dennis John S., Davidson John F., Hayhurst Allan N., The Effects of Repeated Cycles of Calcination and Carbonation on a Variety of Different Limestones, as Measured in a Hot Fluidized Bed of Sand, 10.1021/ef060506o
  84. Lu Dennis Y., Hughes Robin W., Anthony Edward J., Ca-based sorbent looping combustion for CO2 capture in pilot-scale dual fluidized beds, 10.1016/j.fuproc.2008.06.011
  85. Fang Fan, Li Zhen-shan, Cai Ning-sheng, Continuous CO2Capture from Flue Gases Using a Dual Fluidized Bed Reactor with Calcium-Based Sorbent, 10.1021/ie901128r
  86. Rodríguez N., Alonso M., Abanades J. C., Experimental investigation of a circulating fluidized-bed reactor to capture CO2 with CaO, 10.1002/aic.12337
  87. Romeo Luis M., Catalina David, Lisbona Pilar, Lara Yolanda, Martínez Ana, Reduction of greenhouse gas emissions by integration of cement plants, power plants, and CO2 capture systems, 10.1002/ghg3.5
  88. Allwood Julian M., Cullen Jonathan M., Milford Rachel L., Options for Achieving a 50% Cut in Industrial Carbon Emissions by 2050, 10.1021/es902909k
  89. Bosoaga Adina, Masek Ondrej, Oakey John E., CO2 Capture Technologies for Cement Industry, 10.1016/j.egypro.2009.01.020
  90. Deja Jan, Uliasz-Bochenczyk Alicja, Mokrzycki Eugeniusz, CO2 emissions from Polish cement industry, 10.1016/j.ijggc.2010.02.002
  91. FERNANDEZBERTOS M, SIMONS S, HILLS C, CAREY P, A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2, 10.1016/j.jhazmat.2004.04.019
  92. Zhao Ming, Minett Andrew I., Harris Andrew T., A review of techno-economic models for the retrofitting of conventional pulverised-coal power plants for post-combustion capture (PCC) of CO2, 10.1039/c2ee22890d
  93. Luis Patricia, Van Gerven Tom, Van der Bruggen Bart, Recent developments in membrane-based technologies for CO2 capture, 10.1016/j.pecs.2012.01.004
  94. George Soney C, Thomas Sabu, Transport phenomena through polymeric systems, 10.1016/s0079-6700(00)00036-8
  95. Merkel T. C., Bondar V. I., Nagai K., Freeman B. D., Pinnau I., Gas sorption, diffusion, and permeation in poly(dimethylsiloxane), 10.1002/(sici)1099-0488(20000201)38:3<415::aid-polb8>3.0.co;2-z
  96. Lin H., Freeman B.D., Gas solubility, diffusivity and permeability in poly(ethylene oxide), 10.1016/j.memsci.2003.08.031
  97. Powell Clem E., Qiao Greg G., Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases, 10.1016/j.memsci.2005.12.062
  98. Minelli Matteo, Sarti Giulio C., Permeability and diffusivity of CO2 in glassy polymers with and without plasticization, 10.1016/j.memsci.2013.02.013
  99. Anderson Matthew, Wang Haibing, Lin Y.S., Inorganic membranes for carbon dioxide and nitrogen separation, 10.1515/revce-2012-0001
  100. Jiang Lan Ying, Chung Tai Shung, Kulprathipanja Santi, Fabrication of mixed matrix hollow fibers with intimate polymer–zeolite interface for gas separation, 10.1002/aic.10909
  101. Husain Shabbir, Koros William J., Mixed matrix hollow fiber membranes made with modified HSSZ-13 zeolite in polyetherimide polymer matrix for gas separation, 10.1016/j.memsci.2006.11.016
  102. Czyperek M., Zapp P., Bouwmeester H.J.M., Modigell M., Ebert K., Voigt I., Meulenberg W.A., Singheiser L., Stöver D., Gas separation membranes for zero-emission fossil power plants: MEM-BRAIN, 10.1016/j.memsci.2010.04.012
  103. Smart S., Lin C. X. C., Ding L., Thambimuthu K., Diniz da Costa J. C., Ceramic membranes for gas processing in coal gasification, 10.1039/b924327e
  104. Robeson Lloyd M., Correlation of separation factor versus permeability for polymeric membranes, 10.1016/0376-7388(91)80060-j
  105. Freeman Benny D., Basis of Permeability/Selectivity Tradeoff Relations in Polymeric Gas Separation Membranes, 10.1021/ma9814548
  106. Robeson Lloyd M., The upper bound revisited, 10.1016/j.memsci.2008.04.030
  107. Dal-Cin Mauro M., Kumar Ashwani, Layton Linda, Revisiting the experimental and theoretical upper bounds of light pure gas selectivity–permeability for polymeric membranes, 10.1016/j.memsci.2008.06.027
  108. Rowe Brandon W., Robeson Lloyd M., Freeman Benny D., Paul Donald R., Influence of temperature on the upper bound: Theoretical considerations and comparison with experimental results, 10.1016/j.memsci.2010.04.047
  109. Li Bingyun, Duan Yuhua, Luebke David, Morreale Bryan, Advances in CO2 capture technology: A patent review, 10.1016/j.apenergy.2012.09.009
  110. Koros WJ Vu DQ Mahajan R Miller SJ Gas separations using mixed matrix membranes 2003
  111. Koros WJ Vu DQ Mahajan R Miller SJ Carbon molecular sieves and methods for making the same 2003
  112. Kuperman A Miller SJ Vu DQ Mixed matrix membrane with mesoporous particles and methods for making and using the same US7306647 2007
  113. Tang, Chem Commun, 26, 3325 (2005)
  114. Bara Jason E., Camper Dean E., Gin Douglas L., Noble Richard D., Room-Temperature Ionic Liquids and Composite Materials: Platform Technologies for CO2Capture, 10.1021/ar9001747
  115. Simons Katja, Nijmeijer Kitty, Bara Jason E., Noble Richard D., Wessling Matthias, How do polymerized room-temperature ionic liquid membranes plasticize during high pressure CO2 permeation?, 10.1016/j.memsci.2010.05.018
  116. Yang Hongqun, Xu Zhenghe, Fan Maohong, Gupta Rajender, Slimane Rachid B, Bland Alan E, Wright Ian, Progress in carbon dioxide separation and capture: A review, 10.1016/s1001-0742(08)60002-9
  117. Tang Jianbin, Tang Huadong, Sun Weilin, Radosz Maciej, Shen Youqing, Poly(ionic liquid)s as new materials for CO2 absorption, 10.1002/pola.21031
  118. Bara Jason E., Lessmann Sonja, Gabriel Christopher J., Hatakeyama Evan S., Noble Richard D., Gin Douglas L., Synthesis and Performance of Polymerizable Room-Temperature Ionic Liquids as Gas Separation Membranes, 10.1021/ie0704492
  119. Li Pei, Paul D. R., Chung Tai-Shung, High performance membranes based on ionic liquid polymers for CO2 separation from the flue gas, 10.1039/c2gc16354c
  120. Tomé Liliana C., Mecerreyes David, Freire Carmen S.R., Rebelo Luís Paulo N., Marrucho Isabel M., Pyrrolidinium-based polymeric ionic liquid materials: New perspectives for CO2 separation membranes, 10.1016/j.memsci.2012.10.044
  121. MacDowell Niall, Florin Nick, Buchard Antoine, Hallett Jason, Galindo Amparo, Jackson George, Adjiman Claire S., Williams Charlotte K., Shah Nilay, Fennell Paul, An overview of CO2 capture technologies, 10.1039/c004106h
  122. SCOVAZZO P, KIEFT J, FINAN D, KOVAL C, DUBOIS D, NOBLE R, Gas separations using non-hexafluorophosphate [PF6]− anion supported ionic liquid membranes, 10.1016/j.memsci.2004.02.033
  123. Mahurin Shannon M., Yeary Joshua S., Baker Sheila N., Jiang De-en, Dai Sheng, Baker Gary A., Ring-opened heterocycles: Promising ionic liquids for gas separation and capture, 10.1016/j.memsci.2012.01.042
  124. Mahurin Shannon M., Hillesheim Patrick C., Yeary Joshua S., Jiang De-en, Dai Sheng, High CO2 solubility, permeability and selectivity in ionic liquids with the tetracyanoborate anion, 10.1039/c2ra22342b
  125. Close Joshua J., Farmer Karen, Moganty Surya S., Baltus Ruth E., CO2/N2 separations using nanoporous alumina-supported ionic liquid membranes: Effect of the support on separation performance, 10.1016/j.memsci.2011.11.037
  126. Scovazzo Paul, Determination of the upper limits, benchmarks, and critical properties for gas separations using stabilized room temperature ionic liquid membranes (SILMs) for the purpose of guiding future research, 10.1016/j.memsci.2009.07.028
  127. Belaissaoui Bouchra, Willson David, Favre Eric, Membrane gas separations and post-combustion carbon dioxide capture: Parametric sensitivity and process integration strategies, 10.1016/j.cej.2012.09.012
  128. Merkel Tim C., Lin Haiqing, Wei Xiaotong, Baker Richard, Power plant post-combustion carbon dioxide capture: An opportunity for membranes, 10.1016/j.memsci.2009.10.041
  129. Feng Chunsheng, Wang Rong, Zhang Hongyan, Shi Lei, Diverse morphologies of PVDF hollow fiber membranes and their performance analysis as gas/liquid contactors, 10.1002/app.30250
  130. Drioli E., Curcio E., di Profio G., State of the Art and Recent Progresses in Membrane Contactors, 10.1205/cherd.04203
  131. Luis Patricia, Van der Bruggen Bart, Van Gerven Tom, Non-dispersive absorption for CO2 capture: from the laboratory to industry, 10.1002/jctb.2614
  132. Cussler, Mass transfer in fluid systems (1997)
  133. Yang Dali, Barbero Robert S., Devlin David J., Cussler E.L., Colling Craig W., Carrera Martin E., Hollow fibers as structured packing for olefin/paraffin separations, 10.1016/j.memsci.2005.11.033
  134. Wang R., Zhang H.Y., Feron P.H.M., Liang D.T., Influence of membrane wetting on CO2 capture in microporous hollow fiber membrane contactors, 10.1016/j.seppur.2005.04.007
  135. Zhang Hong-Yan, Wang Rong, Liang David Tee, Tay Joo Hwa, Theoretical and experimental studies of membrane wetting in the membrane gas–liquid contacting process for CO2 absorption, 10.1016/j.memsci.2007.09.050
  136. Luis P., Garea A., Irabien A., Zero solvent emission process for sulfur dioxide recovery using a membrane contactor and ionic liquids, 10.1016/j.memsci.2008.12.046
  137. Wang Zhen, Fang Mengxiang, Pan Yili, Yan Shuiping, Luo Zhongyang, Amine-based absorbents selection for CO2 membrane vacuum regeneration technology by combined absorption–desorption analysis, 10.1016/j.ces.2013.01.057
  138. Zhang Weidong, Li Jiang, Chen Geng, You Wei, Jiang Yi, Sun Wei, Experimental Study of Mass Transfer in Membrane Absorption Process Using Membranes with Different Porosities, 10.1021/ie1001026
  139. Portugal A.F., Magalhães F.D., Mendes A., Carbon dioxide removal from anaesthetic gas circuits using hollow fiber membrane contactors with amino acid salt solutions, 10.1016/j.memsci.2009.04.055
  140. El-Naas Muftah H., Al-Marzouqi Mohamed, Marzouk Sayed A., Abdullatif Nadia, Evaluation of the removal of CO2 using membrane contactors: Membrane wettability, 10.1016/j.memsci.2010.01.018
  141. Luis P., Van Aubel D., Van der Bruggen B., Technical viability and exergy analysis of membrane crystallization: Closing the loop of CO2 sequestration, 10.1016/j.ijggc.2012.11.027
  142. Ye Wenyuan, Lin Jiuyang, Shen Jiangnan, Luis Patricia, Van der Bruggen Bart, Membrane Crystallization of Sodium Carbonate for Carbon Dioxide Recovery: Effect of Impurities on the Crystal Morphology, 10.1021/cg400072n
  143. Luis P., Garea A., Irabien A., Modelling of a hollow fibre ceramic contactor for SO2 absorption, 10.1016/j.seppur.2010.02.003
  144. Naim R., Ismail A.F., Mansourizadeh A., Effect of non-solvent additives on the structure and performance of PVDF hollow fiber membrane contactor for CO2 stripping, 10.1016/j.memsci.2012.08.052
  145. Mosadegh-Sedghi Sanaz, Brisson Josée, Rodrigue Denis, Iliuta Maria C., Morphological, chemical and thermal stability of microporous LDPE hollow fiber membranes in contact with single and mixed amine based CO2 absorbents, 10.1016/j.seppur.2012.05.025
  146. Lv Yuexia, Yu Xinhai, Jia Jingjing, Tu Shan-Tung, Yan Jinyue, Dahlquist Erik, Fabrication and characterization of superhydrophobic polypropylene hollow fiber membranes for carbon dioxide absorption, 10.1016/j.apenergy.2010.12.038
  147. Li Shiguang, Rocha Dennis J., James Zhou S., Meyer Howard S., Bikson Benjamin, Ding Yong, Post-combustion CO2 capture using super-hydrophobic, polyether ether ketone, hollow fiber membrane contactors, 10.1016/j.memsci.2012.12.001