Donneau, Anne-Françoise
[Other]
Mauer, Murielle E L
[Autre]
Lambert, Philippe
[UCL]
Lesaffre, Emmanuel M E H
[KUL]
Albert, Aurélie
[ULg]
A popular choice when analyzing ordinal data is to consider the cumulative proportional odds model to relate the marginal probabilities of the ordinal outcome to a set of covariates. However, application of this model relies on the condition of identical cumulative odds ratios across the cut-offs of the ordinal outcome; the well-known proportional odds assumption. This paper focuses on the assessment of this assumption while accounting for repeated and missing data. In this respect, we develop a statistical method built on multiple imputation (MI) based on generalized estimating equations that allows to test the proportionality assumption under the missing at random setting. The performance of the proposed method is evaluated for two MI algorithms for incomplete longitudinal ordinal data. The impact of both MI methods is compared with respect to the type I error rate and the power for situations covering various numbers of categories of the ordinal outcome, sample sizes, rates of missingness, well-balanced and skewed data. The comparison of both MI methods with the complete-case analysis is also provided.We illustrate the use of the proposed methods on a quality of life data from a cancer clinical trial.
- Aaronson N. K., Ahmedzai S., Bergman B., Bullinger M., Cull A., Duez N. J., Filiberti A., Flechtner H., Fleishman S. B., Haes J. C. J. M. d., Kaasa S., Klee M., Osoba D., Razavi D., Rofe P. B., Schraub S., Sneeuw K., Sullivan M., Takeda F., The European Organization for Research and Treatment of Cancer QLQ-C30: A Quality-of-Life Instrument for Use in International Clinical Trials in Oncology, 10.1093/jnci/85.5.365
- ALBERT A., ANDERSON J. A., On the existence of maximum likelihood estimates in logistic regression models, 10.1093/biomet/71.1.1
- Bender Ralf, Grouven Ulrich, Using Binary Logistic Regression Models for Ordinal Data with Non-proportional Odds, 10.1016/s0895-4356(98)00066-3
- van Buuren Stef, Multiple imputation of discrete and continuous data by fully conditional specification, 10.1177/0962280206074463
- Donneau A. F., Mauer M., Lambert P., Molenberghs G., Albert A., Simulation-Based Study Comparing Multiple Imputation Methods for Non-Monotone Missing Ordinal Data in Longitudinal Settings, 10.1080/10543406.2014.920864
- Donneau A. F., Mauer M., Molenberghs G., Albert A., A Simulation Study Comparing Multiple Imputation Methods for Incomplete Longitudinal Ordinal Data, 10.1080/03610918.2013.818690
- Goodnight James H., A Tutorial on the SWEEP Operator, 10.1080/00031305.1979.10482685
- Graham John W., Olchowski Allison E., Gilreath Tamika D., How Many Imputations are Really Needed? Some Practical Clarifications of Multiple Imputation Theory, 10.1007/s11121-007-0070-9
- Ibrahim Noor Akma, Suliadi Suliadi, Generating correlated discrete ordinal data using R and SAS IML, 10.1016/j.cmpb.2011.06.003
- Lee A.J., Some simple methods for generating correlated categorical variates, 10.1016/s0167-9473(97)00030-3
- Li K.-H., Stat. Sin., 1, 65 (1991)
- LIANG KUNG-YEE, ZEGER SCOTT L., Longitudinal data analysis using generalized linear models, 10.1093/biomet/73.1.13
- Lipsitz Stuart R., Kim Kyungmann, Zhao Lueping, Analysis of repeated categorical data using generalized estimating equations, 10.1002/sim.4780131106
- Little Roderick J. A., Modeling the Drop-Out Mechanism in Repeated-Measures Studies, 10.1080/01621459.1995.10476615
- Little R.J.A., Statistical Analysis with Missing Data (1987)
- McCullagh P., J. R. Stat. Soc. Ser. B, 42, 109 (1980)
- Peterson Bercedis, Harrell Frank E., Partial Proportional Odds Models for Ordinal Response Variables, 10.2307/2347760
- Robins James M., Rotnitzky Andrea, Semiparametric Efficiency in Multivariate Regression Models with Missing Data, 10.1080/01621459.1995.10476494
- Robins James M., Rotnitzky Andrea, Zhao Lue Ping, Analysis of Semiparametric Regression Models for Repeated Outcomes in the Presence of Missing Data, 10.1080/01621459.1995.10476493
- ROTNITZKY ANDREA, JEWELL NICHOLAS P., Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data, 10.1093/biomet/77.3.485
- RUBIN DONALD B., Inference and missing data, 10.1093/biomet/63.3.581
- Multiple Imputation for Nonresponse in Surveys, ISBN:9780470316696, 10.1002/9780470316696
- Schafer J, Analysis of Incomplete Multivariate Data, ISBN:9780412040610, 10.1201/9781439821862
- Stiger Thomas R., Barnhart Huiman X., Williamson John M., Testing proportionality in the proportional odds model fitted with GEE, 10.1002/(sici)1097-0258(19990615)18:11<1419::aid-sim127>3.0.co;2-q
- Stokes M., Categorical Data Analysis Using the SAS System (2000)
- Stupp Roger, Mason Warren P., van den Bent Martin J., Weller Michael, Fisher Barbara, Taphoorn Martin J.B., Belanger Karl, Brandes Alba A., Marosi Christine, Bogdahn Ulrich, Curschmann Jürgen, Janzer Robert C., Ludwin Samuel K., Gorlia Thierry, Allgeier Anouk, Lacombe Denis, Cairncross J. Gregory, Eisenhauer Elizabeth, Mirimanoff René O., Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma, 10.1056/nejmoa043330
- Tanner Martin A., Wong Wing Hung, The Calculation of Posterior Distributions by Data Augmentation, 10.1080/01621459.1987.10478458
- Taphoorn Martin JB, Stupp Roger, Coens Corneel, Osoba David, Kortmann Rolf, van den Bent Martin J, Mason Warren, Mirimanoff René O, Baumert Brigitta G, Eisenhauer Elizabeth, Forsyth Peter, Bottomley Andrew, Health-related quality of life in patients with glioblastoma: a randomised controlled trial, 10.1016/s1470-2045(05)70432-0
- WALKER STROTHER H., DUNCAN DAVID B., Estimation of the probability of an event as a function of several independent variables, 10.1093/biomet/54.1-2.167
- White Ian R., Royston Patrick, Wood Angela M., Multiple imputation using chained equations: Issues and guidance for practice, 10.1002/sim.4067
- Zeger Scott L., Liang Kung-Yee, Longitudinal Data Analysis for Discrete and Continuous Outcomes, 10.2307/2531248
Bibliographic reference |
Donneau, Anne-Françoise ; Mauer, Murielle E L ; Lambert, Philippe ; Lesaffre, Emmanuel M E H ; Albert, Aurélie. Testing the proportional odds assumption in multiply imputed ordinal longitudinal data. In: Journal of Applied Statistics, Vol. 42, no.10, p. 2257-2279 (2015) |
Permanent URL |
http://hdl.handle.net/2078.1/168109 |