User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

Testing the proportional odds assumption in multiply imputed ordinal longitudinal data

  1. Aaronson N. K., Ahmedzai S., Bergman B., Bullinger M., Cull A., Duez N. J., Filiberti A., Flechtner H., Fleishman S. B., Haes J. C. J. M. d., Kaasa S., Klee M., Osoba D., Razavi D., Rofe P. B., Schraub S., Sneeuw K., Sullivan M., Takeda F., The European Organization for Research and Treatment of Cancer QLQ-C30: A Quality-of-Life Instrument for Use in International Clinical Trials in Oncology, 10.1093/jnci/85.5.365
  2. ALBERT A., ANDERSON J. A., On the existence of maximum likelihood estimates in logistic regression models, 10.1093/biomet/71.1.1
  3. Bender Ralf, Grouven Ulrich, Using Binary Logistic Regression Models for Ordinal Data with Non-proportional Odds, 10.1016/s0895-4356(98)00066-3
  4. van Buuren Stef, Multiple imputation of discrete and continuous data by fully conditional specification, 10.1177/0962280206074463
  5. Donneau A. F., Mauer M., Lambert P., Molenberghs G., Albert A., Simulation-Based Study Comparing Multiple Imputation Methods for Non-Monotone Missing Ordinal Data in Longitudinal Settings, 10.1080/10543406.2014.920864
  6. Donneau A. F., Mauer M., Molenberghs G., Albert A., A Simulation Study Comparing Multiple Imputation Methods for Incomplete Longitudinal Ordinal Data, 10.1080/03610918.2013.818690
  7. Goodnight James H., A Tutorial on the SWEEP Operator, 10.1080/00031305.1979.10482685
  8. Graham John W., Olchowski Allison E., Gilreath Tamika D., How Many Imputations are Really Needed? Some Practical Clarifications of Multiple Imputation Theory, 10.1007/s11121-007-0070-9
  9. Ibrahim Noor Akma, Suliadi Suliadi, Generating correlated discrete ordinal data using R and SAS IML, 10.1016/j.cmpb.2011.06.003
  10. Lee A.J., Some simple methods for generating correlated categorical variates, 10.1016/s0167-9473(97)00030-3
  11. Li K.-H., Stat. Sin., 1, 65 (1991)
  12. LIANG KUNG-YEE, ZEGER SCOTT L., Longitudinal data analysis using generalized linear models, 10.1093/biomet/73.1.13
  13. Lipsitz Stuart R., Kim Kyungmann, Zhao Lueping, Analysis of repeated categorical data using generalized estimating equations, 10.1002/sim.4780131106
  14. Little Roderick J. A., Modeling the Drop-Out Mechanism in Repeated-Measures Studies, 10.1080/01621459.1995.10476615
  15. Little R.J.A., Statistical Analysis with Missing Data (1987)
  16. McCullagh P., J. R. Stat. Soc. Ser. B, 42, 109 (1980)
  17. Peterson Bercedis, Harrell Frank E., Partial Proportional Odds Models for Ordinal Response Variables, 10.2307/2347760
  18. Robins James M., Rotnitzky Andrea, Semiparametric Efficiency in Multivariate Regression Models with Missing Data, 10.1080/01621459.1995.10476494
  19. Robins James M., Rotnitzky Andrea, Zhao Lue Ping, Analysis of Semiparametric Regression Models for Repeated Outcomes in the Presence of Missing Data, 10.1080/01621459.1995.10476493
  20. ROTNITZKY ANDREA, JEWELL NICHOLAS P., Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data, 10.1093/biomet/77.3.485
  21. RUBIN DONALD B., Inference and missing data, 10.1093/biomet/63.3.581
  22. Multiple Imputation for Nonresponse in Surveys, ISBN:9780470316696, 10.1002/9780470316696
  23. Schafer J, Analysis of Incomplete Multivariate Data, ISBN:9780412040610, 10.1201/9781439821862
  24. Stiger Thomas R., Barnhart Huiman X., Williamson John M., Testing proportionality in the proportional odds model fitted with GEE, 10.1002/(sici)1097-0258(19990615)18:11<1419::aid-sim127>3.0.co;2-q
  25. Stokes M., Categorical Data Analysis Using the SAS System (2000)
  26. Stupp Roger, Mason Warren P., van den Bent Martin J., Weller Michael, Fisher Barbara, Taphoorn Martin J.B., Belanger Karl, Brandes Alba A., Marosi Christine, Bogdahn Ulrich, Curschmann Jürgen, Janzer Robert C., Ludwin Samuel K., Gorlia Thierry, Allgeier Anouk, Lacombe Denis, Cairncross J. Gregory, Eisenhauer Elizabeth, Mirimanoff René O., Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma, 10.1056/nejmoa043330
  27. Tanner Martin A., Wong Wing Hung, The Calculation of Posterior Distributions by Data Augmentation, 10.1080/01621459.1987.10478458
  28. Taphoorn Martin JB, Stupp Roger, Coens Corneel, Osoba David, Kortmann Rolf, van den Bent Martin J, Mason Warren, Mirimanoff René O, Baumert Brigitta G, Eisenhauer Elizabeth, Forsyth Peter, Bottomley Andrew, Health-related quality of life in patients with glioblastoma: a randomised controlled trial, 10.1016/s1470-2045(05)70432-0
  29. WALKER STROTHER H., DUNCAN DAVID B., Estimation of the probability of an event as a function of several independent variables, 10.1093/biomet/54.1-2.167
  30. White Ian R., Royston Patrick, Wood Angela M., Multiple imputation using chained equations: Issues and guidance for practice, 10.1002/sim.4067
  31. Zeger Scott L., Liang Kung-Yee, Longitudinal Data Analysis for Discrete and Continuous Outcomes, 10.2307/2531248
Bibliographic reference Donneau, Anne-Françoise ; Mauer, Murielle E L ; Lambert, Philippe ; Lesaffre, Emmanuel M E H ; Albert, Aurélie. Testing the proportional odds assumption in multiply imputed ordinal longitudinal data. In: Journal of Applied Statistics, Vol. 42, no.10, p. 2257-2279 (2015)
Permanent URL http://hdl.handle.net/2078.1/168109