User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

Oncogenic Drivers in Myeloproliferative Neoplasms: From JAK2 to Calreticulin Mutations.

  • Open access
  • PDF
  • 782.10 K
  1. Vainchenker W, Constantinescu S N, JAK/STAT signaling in hematological malignancies, 10.1038/onc.2012.347
  2. Bandaranayake Rajintha M, Ungureanu Daniela, Shan Yibing, Shaw David E, Silvennoinen Olli, Hubbard Stevan R, Crystal structures of the JAK2 pseudokinase domain and the pathogenic mutant V617F, 10.1038/nsmb.2348
  3. Klampfl Thorsten, Gisslinger Heinz, Harutyunyan Ashot S., Nivarthi Harini, Rumi Elisa, Milosevic Jelena D., Them Nicole C.C., Berg Tiina, Gisslinger Bettina, Pietra Daniela, Chen Doris, Vladimer Gregory I., Bagienski Klaudia, Milanesi Chiara, Casetti Ilaria Carola, Sant'Antonio Emanuela, Ferretti Virginia, Elena Chiara, Schischlik Fiorella, Cleary Ciara, Six Melanie, Schalling Martin, Schönegger Andreas, Bock Christoph, Malcovati Luca, Pascutto Cristiana, Superti-Furga Giulio, Cazzola Mario, Kralovics Robert, Somatic Mutations of Calreticulin in Myeloproliferative Neoplasms, 10.1056/nejmoa1311347
  4. Nangalia J., Massie C.E., Baxter E.J., Nice F.L., Gundem G., Wedge D.C., Avezov E., Li J., Kollmann K., Kent D.G., Aziz A., Godfrey A.L., Hinton J., Martincorena I., Van Loo P., Jones A.V., Guglielmelli P., Tarpey P., Harding H.P., Fitzpatrick J.D., Goudie C.T., Ortmann C.A., Loughran S.J., Raine K., Jones D.R., Butler A.P., Teague J.W., O'Meara S., McLaren S., Bianchi M., Silber Y., Dimitropoulou D., Bloxham D., Mudie L., Maddison M., Robinson B., Keohane C., Maclean C., Hill K., Orchard K., Tauro S., Du M.-Q., Greaves M., Bowen D., Huntly B.J.P., Harrison C.N., Cross N.C.P., Ron D., Vannucchi A.M., Papaemmanuil E., Campbell P.J., Green A.R., Somatic CALR Mutations in Myeloproliferative Neoplasms with Nonmutated JAK2, 10.1056/nejmoa1312542
  5. Rampal R., Al-Shahrour F., Abdel-Wahab O., Patel J. P., Brunel J.-P., Mermel C. H., Bass A. J., Pretz J., Ahn J., Hricik T., Kilpivaara O., Wadleigh M., Busque L., Gilliland D. G., Golub T. R., Ebert B. L., Levine R. L., Integrated genomic analysis illustrates the central role of JAK-STAT pathway activation in myeloproliferative neoplasm pathogenesis, 10.1182/blood-2014-02-554634
  6. Scott Linda M., Tong Wei, Levine Ross L., Scott Mike A., Beer Philip A., Stratton Michael R., Futreal P. Andrew, Erber Wendy N., McMullin Mary Frances, Harrison Claire N., Warren Alan J., Gilliland D. Gary, Lodish Harvey F., Green Anthony R., JAK2Exon 12 Mutations in Polycythemia Vera and Idiopathic Erythrocytosis, 10.1056/nejmoa065202
  7. James Chloé, Ugo Valérie, Le Couédic Jean-Pierre, Staerk Judith, Delhommeau François, Lacout Catherine, Garçon Loïc, Raslova Hana, Berger Roland, Bennaceur-Griscelli Annelise, Villeval Jean Luc, Constantinescu Stefan N., Casadevall Nicole, Vainchenker William, A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera, 10.1038/nature03546
  8. Levine Ross L., Wadleigh Martha, Cools Jan, Ebert Benjamin L., Wernig Gerlinde, Huntly Brian J.P., Boggon Titus J., Wlodarska Iwona, Clark Jennifer J., Moore Sandra, Adelsperger Jennifer, Koo Sumin, Lee Jeffrey C., Gabriel Stacey, Mercher Thomas, D’Andrea Alan, Fröhling Stefan, Döhner Konstanze, Marynen Peter, Vandenberghe Peter, Mesa Ruben A., Tefferi Ayalew, Griffin James D., Eck Michael J., Sellers William R., Meyerson Matthew, Golub Todd R., Lee Stephanie J., Gilliland D. Gary, Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis, 10.1016/j.ccr.2005.03.023
  9. Kralovics R., Altered gene expression in myeloproliferative disorders correlates with activation of signaling by the V617F mutation of Jak2, 10.1182/blood-2005-05-1889
  10. BAXTER E, SCOTT L, CAMPBELL P, EAST C, FOUROUCLAS N, SWANTON S, VASSILIOU G, BENCH A, BOYD E, CURTIN N, Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders, 10.1016/s0140-6736(05)74230-6
  11. Dusa Alexandra, Staerk Judith, Elliott Joanne, Pecquet Christian, Poirel Hélène A., Johnston James A., Constantinescu Stefan N., Substitution of Pseudokinase Domain Residue Val-617 by Large Non-polar Amino Acids Causes Activation of JAK2, 10.1074/jbc.m709302200
  12. Dusa Alexandra, Mouton Céline, Pecquet Christian, Herman Murielle, Constantinescu Stefan N., JAK2 V617F Constitutive Activation Requires JH2 Residue F595: A Pseudokinase Domain Target for Specific Inhibitors, 10.1371/journal.pone.0011157
  13. Silvennoinen O, Hubbard SR. Molecular insights into regulation of JAK2 in myeloproliferative neoplasms. Blood. 2015. doi: 10.1182/blood-2015-01-621110 .
  14. Sangkhae V., Etheridge S. L., Kaushansky K., Hitchcock I. S., The thrombopoietin receptor, MPL, is critical for development of a JAK2V617F-induced myeloproliferative neoplasm, 10.1182/blood-2014-07-587238
  15. Walz C., Ahmed W., Lazarides K., Betancur M., Patel N., Hennighausen L., Zaleskas V. M., Van Etten R. A., Essential role for Stat5a/b in myeloproliferative neoplasms induced by BCR-ABL1 and JAK2V617F in mice, 10.1182/blood-2011-12-397554
  16. Yan D., Hutchison R. E., Mohi G., Critical requirement for Stat5 in a mouse model of polycythemia vera, 10.1182/blood-2011-03-345215
  17. Moucadel Virginie, Constantinescu Stefan N., Differential STAT5 Signaling by Ligand-dependent and Constitutively Active Cytokine Receptors, 10.1074/jbc.m407326200
  18. Girardot M., Pecquet C., Boukour S., Knoops L., Ferrant A., Vainchenker W., Giraudier S., Constantinescu S. N., miR-28 is a thrombopoietin receptor targeting microRNA detected in a fraction of myeloproliferative neoplasm patient platelets, 10.1182/blood-2008-06-165985
  19. Girardot M, Pecquet C, Chachoua I, Van Hees J, Guibert S, Ferrant A, et al. Persistent STAT5 activation in myeloid neoplasms recruits p53 into gene regulation. Oncogene. 2014. doi: 10.1038/onc.2014.60 .
  20. Duek A., Lundberg P., Shimizu T., Grisouard J., Karow A., Kubovcakova L., Hao-Shen H., Dirnhofer S., Skoda R. C., Loss of Stat1 decreases megakaryopoiesis and favors erythropoiesis in a JAK2-V617F-driven mouse model of MPNs, 10.1182/blood-2013-07-514208
  21. Grisouard J, Shimizu T, Duek A, Kubovcakova L, Hao-Shen H, Dirnhofer S, et al. Deletion of Stat3 in hematopoietic cells enhances thrombocytosis and shortens survival in a JAK2-V617F mouse model of MPN. Blood. 2015. doi: 10.1182/blood-2014-08-594572 .
  22. Chen Edwin, Ahn Jong Sook, Massie Charlie E., Clynes David, Godfrey Anna L., Li Juan, Park Hyun Jung, Nangalia Jyoti, Silber Yvonne, Mullally Ann, Gibbons Richard J., Green Anthony R., JAK2V617F promotes replication fork stalling with disease-restricted impairment of the intra-S checkpoint response, 10.1073/pnas.1401873111
  23. Lundberg Pontus, Takizawa Hitoshi, Kubovcakova Lucia, Guo Guoji, Hao-Shen Hui, Dirnhofer Stephan, Orkin Stuart H., Manz Markus G., Skoda Radek C., Myeloproliferative neoplasms can be initiated from a single hematopoietic stem cell expressingJAK2-V617F, 10.1084/jem.20131371
  24. Mullally Ann, Lane Steven W., Ball Brian, Megerdichian Christine, Okabe Rachel, Al-Shahrour Fatima, Paktinat Mahnaz, Haydu J. Erika, Housman Elizabeth, Lord Allegra M., Wernig Gerlinde, Kharas Michael G., Mercher Thomas, Kutok Jeffery L., Gilliland D. Gary, Ebert Benjamin L., Physiological Jak2V617F Expression Causes a Lethal Myeloproliferative Neoplasm with Differential Effects on Hematopoietic Stem and Progenitor Cells, 10.1016/j.ccr.2010.05.015
  25. Kubovcakova L., Lundberg P., Grisouard J., Hao-Shen H., Romanet V., Andraos R., Murakami M., Dirnhofer S., Wagner K.-U., Radimerski T., Skoda R. C., Differential effects of hydroxyurea and INC424 on mutant allele burden and myeloproliferative phenotype in a JAK2-V617F polycythemia vera mouse model, 10.1182/blood-2012-03-415646
  26. Pikman Yana, Lee Benjamin H, Mercher Thomas, McDowell Elizabeth, Ebert Benjamin L, Gozo Maricel, Cuker Adam, Wernig Gerlinde, Moore Sandra, Galinsky Ilene, DeAngelo Daniel J, Clark Jennifer J, Lee Stephanie J, Golub Todd R, Wadleigh Martha, Gilliland D. Gary, Levine Ross L, MPLW515L Is a Novel Somatic Activating Mutation in Myelofibrosis with Myeloid Metaplasia, 10.1371/journal.pmed.0030270
  27. Pardanani A. D., Levine R. L., Lasho T., Pikman Y., Mesa R. A., Wadleigh M., Steensma D. P., Elliott M. A., Wolanskyj A. P., Hogan W. J., McClure R. F., Litzow M. R., Gilliland D. G., Tefferi A., MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients, 10.1182/blood-2006-04-018879
  28. Staerk J., An amphipathic motif at the transmembrane-cytoplasmic junction prevents autonomous activation of the thrombopoietin receptor, 10.1182/blood-2005-06-2600
  29. Defour J.-P., Itaya M., Gryshkova V., Brett I. C., Pecquet C., Sato T., Smith S. O., Constantinescu S. N., Tryptophan at the transmembrane-cytosolic junction modulates thrombopoietin receptor dimerization and activation, 10.1073/pnas.1211560110
  30. Pecquet C., Staerk J., Chaligne R., Goss V., Lee K. A., Zhang X., Rush J., Van Hees J., Poirel H. A., Scheiff J.-M., Vainchenker W., Giraudier S., Polakiewicz R. D., Constantinescu S. N., Induction of myeloproliferative disorder and myelofibrosis by thrombopoietin receptor W515 mutants is mediated by cytosolic tyrosine 112 of the receptor, 10.1182/blood-2008-10-183558
  31. Dudek-Peri  A. M., Ferreira G. B., Muchowicz A., Wouters J., Prada N., Martin S., Kiviluoto S., Winiarska M., Boon L., Mathieu C., van den Oord J., Stas M., Gougeon M.-L., Golab J., Garg A. D., Agostinis P., Antitumor Immunity Triggered by Melphalan Is Potentiated by Melanoma Cell Surface-Associated Calreticulin, 10.1158/0008-5472.can-14-2089
  32. Wang Wen-An, Groenendyk Jody, Michalak Marek, Calreticulin signaling in health and disease, 10.1016/j.biocel.2012.02.009
  33. Gardai Shyra J., McPhillips Kathleen A., Frasch S. Courtney, Janssen William J., Starefeldt Anna, Murphy-Ullrich Joanne E., Bratton Donna L., Oldenborg Per-Arne, Michalak Marek, Henson Peter M., Cell-Surface Calreticulin Initiates Clearance of Viable or Apoptotic Cells through trans-Activation of LRP on the Phagocyte, 10.1016/j.cell.2005.08.032
  34. Kepp Oliver, Menger Laurie, Vacchelli Erika, Locher Clara, Adjemian Sandy, Yamazaki Takahiro, Martins Isabelle, Sukkurwala Abdul Qader, Michaud Michael, Senovilla Laura, Galluzzi Lorenzo, Kroemer Guido, Zitvogel Laurence, Crosstalk between ER stress and immunogenic cell death, 10.1016/j.cytogfr.2013.05.001
  35. Tannous A, Pisoni GB, Hebert DN, Molinari M. N-linked sugar-regulated protein folding and quality control in the ER. Semin Cell Dev Biol. 2014. doi: 10.1016/j.semcdb.2014.12.001 .
  36. Hebert Daniel N, Foellmer Brigitte, Helenius Ari, Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum, 10.1016/0092-8674(95)90395-x
  37. Wijeyesakere Sanjeeva J., Rizvi Syed M., Raghavan Malini, Glycan-dependent and -independent Interactions Contribute to Cellular Substrate Recruitment by Calreticulin, 10.1074/jbc.m113.507921
  38. Kozlov Guennadi, Pocanschi Cosmin L., Rosenauer Angelika, Bastos-Aristizabal Sara, Gorelik Alexei, Williams David B., Gehring Kalle, Structural Basis of Carbohydrate Recognition by Calreticulin, 10.1074/jbc.m110.168294
  39. Chouquet Anne, Païdassi Helena, Ling Wai Li, Frachet Philippe, Houen Gunnar, Arlaud Gérard J., Gaboriaud Christine, X-Ray Structure of the Human Calreticulin Globular Domain Reveals a Peptide-Binding Area and Suggests a Multi-Molecular Mechanism, 10.1371/journal.pone.0017886
  40. Marty C, Harini N, Pecquet C, Chachoua I, Gryshkova V, Villeval JL, et al. (2014) Calr Mutants Retroviral Mouse Models Lead to a Myeloproliferative Neoplasm Mimicking an Essential Thrombocythemia Progressing to a Myelofibrosis Blood (ASH Annual Meeting Abstracts) 124 (21):Abstract 157
  41. Rumi E., Pietra D., Ferretti V., Klampfl T., Harutyunyan A. S., Milosevic J. D., Them N. C. C., Berg T., Elena C., Casetti I. C., Milanesi C., Sant'Antonio E., Bellini M., Fugazza E., Renna M. C., Boveri E., Astori C., Pascutto C., Kralovics R., Cazzola M., , JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes, 10.1182/blood-2013-11-539098
  42. Broseus J., Park J.-H., Carillo S., Hermouet S., Girodon F., Presence of calreticulin mutations in JAK2-negative polycythemia vera, 10.1182/blood-2014-06-583161
  43. Cabagnols Xénia, Cayuela Jean-Michel, Vainchenker William, A CALR Mutation Preceding BCR-ABL1 in an Atypical Myeloproliferative Neoplasm, 10.1056/nejmc1413718
  44. JAK Inhibitor in CALR-Mutant Myelofibrosis, 10.1056/nejmc1400499
  45. Cassinat Bruno, Verger Emmanuelle, Kiladjian Jean-Jacques, Interferon Alfa Therapy in CALR-Mutated Essential Thrombocythemia, 10.1056/nejmc1401255
  46. Kollmann K, Nangalia J, Warsch W, Quentmeier H, Bench A, Boyd E, et al. MARIMO cells harbor a CALR mutation but are not dependent on JAK2/STAT5 signaling. Leukemia. 2014. doi: 10.1038/leu.2014.285 .
  47. Yoshida Hitoshi, Kondo Makoto, Ichihashi Takuji, Hashimoto Naoya, Inazawa Joji, Ohno Ryuzo, Naoe Tomoki, A novel myeloid cell line, Marimo, derived from therapy-related acute myeloid leukemia during treatment of essential thrombocythemia: Consistent chromosomal abnormalities and temporary C-MYC gene amplification, 10.1016/s0165-4608(97)00017-4
  48. Cabagnols X, Defour J P, Ugo V, Ianotto J C, Mossuz P, Mondet J, Girodon F, Alexandre J H, Mansier O, Viallard J F, Lippert E, Murati A, Mozziconacci M J, Saussoy P, Vekemans M C, Knoops L, Pasquier F, Ribrag V, Solary E, Plo I, Constantinescu S N, Casadevall N, Vainchenker W, Marzac C, Bluteau O, Differential association of calreticulin type 1 and type 2 mutations with myelofibrosis and essential thrombocytemia: relevance for disease evolution, 10.1038/leu.2014.270
  49. Rumi E., Pietra D., Pascutto C., Guglielmelli P., Martinez-Trillos A., Casetti I., Colomer D., Pieri L., Pratcorona M., Rotunno G., Sant'Antonio E., Bellini M., Cavalloni C., Mannarelli C., Milanesi C., Boveri E., Ferretti V., Astori C., Rosti V., Cervantes F., Barosi G., Vannucchi A. M., Cazzola M., , Clinical effect of driver mutations of JAK2, CALR, or MPL in primary myelofibrosis, 10.1182/blood-2014-05-578435
  50. Tefferi A., Guglielmelli P., Larson D. R., Finke C., Wassie E. A., Pieri L., Gangat N., Fjerza R., Belachew A. A., Lasho T. L., Ketterling R. P., Hanson C. A., Rambaldi A., Finazzi G., Thiele J., Barbui T., Pardanani A., Vannucchi A. M., Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis, 10.1182/blood-2014-05-579136
  51. Tefferi A., Lasho T. L., Tischer A., Wassie E. A., Finke C. M., Belachew A. A., Ketterling R. P., Hanson C. A., Pardanani A. D., The prognostic advantage of calreticulin mutations in myelofibrosis might be confined to type 1 or type 1-like CALR variants, 10.1182/blood-2014-07-588426
  52. Lundberg P., Karow A., Nienhold R., Looser R., Hao-Shen H., Nissen I., Girsberger S., Lehmann T., Passweg J., Stern M., Beisel C., Kralovics R., Skoda R. C., Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms, 10.1182/blood-2013-11-537167
  53. Rampal Raajit, Ahn Jihae, Abdel-Wahab Omar, Nahas Michelle, Wang Kai, Lipson Doron, Otto Geoff A., Yelensky Roman, Hricik Todd, McKenney Anna Sophia, Chiosis Gabriela, Chung Young Rock, Pandey Suveg, van den Brink Marcel R. M., Armstrong Scott A., Dogan Ahmet, Intlekofer Andrew, Manshouri Taghi, Park Christopher Y., Verstovsek Srdan, Rapaport Franck, Stephens Philip J., Miller Vincent A., Levine Ross L., Genomic and functional analysis of leukemic transformation of myeloproliferative neoplasms, 10.1073/pnas.1407792111
  54. Delhommeau François, Dupont Sabrina, Valle Véronique Della, James Chloé, Trannoy Severine, Massé Aline, Kosmider Olivier, Le Couedic Jean-Pierre, Robert Fabienne, Alberdi Antonio, Lécluse Yann, Plo Isabelle, Dreyfus François J., Marzac Christophe, Casadevall Nicole, Lacombe Catherine, Romana Serge P., Dessen Philippe, Soulier Jean, Viguié Franck, Fontenay Michaela, Vainchenker William, Bernard Olivier A., Mutation inTET2in Myeloid Cancers, 10.1056/nejmoa0810069
  55. Delatte B, Deplus R, Fuks F. Playing TETris with DNA modifications. EMBO J. 2014;33(11):1198–211. doi: 10.15252/embj.201488290 .
  56. Ortmann Christina A., Kent David G., Nangalia Jyoti, Silber Yvonne, Wedge David C., Grinfeld Jacob, Baxter E. Joanna, Massie Charles E., Papaemmanuil Elli, Menon Suraj, Godfrey Anna L., Dimitropoulou Danai, Guglielmelli Paola, Bellosillo Beatriz, Besses Carles, Döhner Konstanze, Harrison Claire N., Vassiliou George S., Vannucchi Alessandro, Campbell Peter J., Green Anthony R., Effect of Mutation Order on Myeloproliferative Neoplasms, 10.1056/nejmoa1412098
  57. Moran-Crusio Kelly, Reavie Linsey, Shih Alan, Abdel-Wahab Omar, Ndiaye-Lobry Delphine, Lobry Camille, Figueroa Maria E., Vasanthakumar Aparna, Patel Jay, Zhao Xinyang, Perna Fabiana, Pandey Suveg, Madzo Jozef, Song Chunxiao, Dai Qing, He Chuan, Ibrahim Sherif, Beran Miloslav, Zavadil Jiri, Nimer Stephen D., Melnick Ari, Godley Lucy A., Aifantis Iannis, Levine Ross L., Tet2 Loss Leads to Increased Hematopoietic Stem Cell Self-Renewal and Myeloid Transformation, 10.1016/j.ccr.2011.06.001
  58. Kameda T., Shide K., Yamaji T., Kamiunten A., Sekine M., Taniguchi Y., Hidaka T., Kubuki Y., Shimoda H., Marutsuka K., Sashida G., Aoyama K., Yoshimitsu M., Harada T., Abe H., Miike T., Iwakiri H., Tahara Y., Sueta M., Yamamoto S., Hasuike S., Nagata K., Iwama A., Kitanaka A., Shimoda K., Loss of TET2 has dual roles in murine myeloproliferative neoplasms: disease sustainer and disease accelerator, 10.1182/blood-2014-04-555508
  59. Tefferi A, Pardanani A, Lim K-H, Abdel-Wahab O, Lasho T L, Patel J, Gangat N, Finke C M, Schwager S, Mullally A, Li C-Y, Hanson C A, Mesa R, Bernard O, Delhommeau F, Vainchenker W, Gilliland D G, Levine R L, TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis, 10.1038/leu.2009.47
  60. Abdel-Wahab O, Pardanani A, Rampal R, Lasho T L, Levine R L, Tefferi A, DNMT3A mutational analysis in primary myelofibrosis, chronic myelomonocytic leukemia and advanced phases of myeloproliferative neoplasms, 10.1038/leu.2011.82
  61. Ernst Thomas, Chase Andrew J, Score Joannah, Hidalgo-Curtis Claire E, Bryant Catherine, Jones Amy V, Waghorn Katherine, Zoi Katerina, Ross Fiona M, Reiter Andreas, Hochhaus Andreas, Drexler Hans G, Duncombe Andrew, Cervantes Francisco, Oscier David, Boultwood Jacqueline, Grand Francis H, Cross Nicholas C P, Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders, 10.1038/ng.621
  62. Carbuccia N, Murati A, Trouplin V, Brecqueville M, Adélaïde J, Rey J, Vainchenker W, Bernard O A, Chaffanet M, Vey N, Birnbaum D, Mozziconacci M J, Mutations of ASXL1 gene in myeloproliferative neoplasms, 10.1038/leu.2009.141
  63. Green Anthony, Beer Philip, Somatic Mutations ofIDH1andIDH2in the Leukemic Transformation of Myeloproliferative Neoplasms, 10.1056/nejmc0910063
  64. Sasaki Masato, Knobbe Christiane B., Munger Joshua C., Lind Evan F., Brenner Dirk, Brüstle Anne, Harris Isaac S., Holmes Roxanne, Wakeham Andrew, Haight Jillian, You-Ten Annick, Li Wanda Y., Schalm Stefanie, Su Shinsan M., Virtanen Carl, Reifenberger Guido, Ohashi Pamela S., Barber Dwayne L., Figueroa Maria E., Melnick Ari, Zúñiga-Pflücker Juan-Carlos, Mak Tak W., IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics, 10.1038/nature11323
  65. Harutyunyan Ashot, Klampfl Thorsten, Cazzola Mario, Kralovics Robert, p53 Lesions in Leukemic Transformation, 10.1056/nejmc1012718
  66. Mascarenhas J., Hoffman R., Ruxolitinib: The First FDA Approved Therapy for the Treatment of Myelofibrosis, 10.1158/1078-0432.ccr-11-3145
  67. Harrison C, Kiladjian JJ, Al-Ali HK, Gisslinger H, Waltzman R, Stalbovskaya V, et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med. 2012;366(9):787–98. doi: 10.1056/NEJMoa1110556 .This study is one of the two COMFORT trials reporting the efficacy of ruxolitinib.
  68. Verstovsek Srdan, Mesa Ruben A., Gotlib Jason, Levy Richard S., Gupta Vikas, DiPersio John F., Catalano John V., Deininger Michael, Miller Carole, Silver Richard T., Talpaz Moshe, Winton Elliott F., Harvey Jimmie H., Arcasoy Murat O., Hexner Elizabeth, Lyons Roger M., Paquette Ronald, Raza Azra, Vaddi Kris, Erickson-Viitanen Susan, Koumenis Iphigenia L., Sun William, Sandor Victor, Kantarjian Hagop M., A Double-Blind, Placebo-Controlled Trial of Ruxolitinib for Myelofibrosis, 10.1056/nejmoa1110557
  69. Vannucchi Alessandro M., Kiladjian Jean Jacques, Griesshammer Martin, Masszi Tamas, Durrant Simon, Passamonti Francesco, Harrison Claire N., Pane Fabrizio, Zachee Pierre, Mesa Ruben, He Shui, Jones Mark M., Garrett William, Li Jingjin, Pirron Ulrich, Habr Dany, Verstovsek Srdan, Ruxolitinib versus Standard Therapy for the Treatment of Polycythemia Vera, 10.1056/nejmoa1409002
  70. Koppikar Priya, Bhagwat Neha, Kilpivaara Outi, Manshouri Taghi, Adli Mazhar, Hricik Todd, Liu Fan, Saunders Lindsay M., Mullally Ann, Abdel-Wahab Omar, Leung Laura, Weinstein Abby, Marubayashi Sachie, Goel Aviva, Gönen Mithat, Estrov Zeev, Ebert Benjamin L., Chiosis Gabriela, Nimer Stephen D., Bernstein Bradley E., Verstovsek Srdan, Levine Ross L., Heterodimeric JAK–STAT activation as a mechanism of persistence to JAK2 inhibitor therapy, 10.1038/nature11303
  71. Manshouri T., Estrov Z., Quintas-Cardama A., Burger J., Zhang Y., Livun A., Knez L., Harris D., Creighton C. J., Kantarjian H. M., Verstovsek S., Bone Marrow Stroma-Secreted Cytokines Protect JAK2V617F-Mutated Cells from the Effects of a JAK2 Inhibitor, 10.1158/0008-5472.can-10-4002
  72. Choong Meng Ling, Pecquet Christian, Pendharkar Vishal, Diaconu Carmen C., Yong Jacklyn Wei Yan, Tai Shi Jing, Wang Si Fang, Defour Jean-Philippe, Sangthongpitag Kanda, Villeval Jean-Luc, Vainchenker William, Constantinescu Stefan N., Lee May Ann, Combination treatment for myeloproliferative neoplasms using JAK and pan-class I PI3K inhibitors, 10.1111/jcmm.12156
  73. Bartalucci Niccolò, Tozzi Lorenzo, Bogani Costanza, Martinelli Serena, Rotunno Giada, Villeval Jean-Luc, Vannucchi Alessandro M., Co-targeting the PI3K/mTOR and JAK2 signalling pathways produces synergistic activity against myeloproliferative neoplasms, 10.1111/jcmm.12162
  74. Bhagwat Neha, Koppikar Priya, Keller Matthew, Marubayashi Sachie, Shank Kaitlyn, Rampal Raajit, Qi Jun, Kleppe Maria, Patel Hardik J., Shah Smit K., Taldone Tony, Bradner James E., Chiosis Gabriela, Levine Ross L., Improved targeting of JAK2 leads to increased therapeutic efficacy in myeloproliferative neoplasms, 10.1182/blood-2014-01-547760
  75. Scott Linda M., The JAK2 exon 12 mutations: A comprehensive review, 10.1002/ajh.22063
Bibliographic reference Cahu, Xavier ; Constantinescu, Stefan N.. Oncogenic Drivers in Myeloproliferative Neoplasms: From JAK2 to Calreticulin Mutations.. In: Current Hematologic Malignancy Reports, Vol. 10, no. 4, p. 335-343 (2015)
Permanent URL http://hdl.handle.net/2078.1/166223