Julien, Ludovic A.
[UCL]
This note investigates a Stackelberg-Nash competition model. We determine the conditions under which the leaders may achieve better profits than the followers when all firms compete on quantity in a two stage game. We focus on the properties of the followers' best response functions. It is shown that the Stackelberg equilibrium may coincide with the Cournot equilibrium. In addition, the followers may achieve higher profits than the leaders. Such results put forward the working and the consequences of strategic complementarities. These results are illustrated with three examples. © 2011 Springer-Verlag.
- Amir Rabah, Supermodularity and Complementarity in Economics: An Elementary Survey, 10.2307/20062066
- Amir Rabah, Grilo Isabel, Stackelberg versus Cournot Equilibrium, 10.1006/game.1998.0650
- Anderson Simon P., Engers Maxim, Stackelberg versus Cournot oligopoly equilibrium, 10.1016/0167-7187(92)90052-z
- Boyer Marcel, Moreaux Michel, Being a leader or a follower, 10.1016/s0167-7187(87)80018-8
- Boyer Marcel, Moreaux Michel, Perfect competition as the limit of a hierarchical market game, 10.1016/0165-1765(86)90215-6
- Bulow Jeremy I., Geanakoplos John D., Klemperer Paul D., Multimarket Oligopoly: Strategic Substitutes and Complements, 10.1086/261312
- Daughety A (1990) Beneficial concentration. Am Econ Rev 80: 1231–1237
- DeMiguel Victor, Xu Huifu, A Stochastic Multiple-Leader Stackelberg Model: Analysis, Computation, and Application, 10.1287/opre.1080.0686
- Dowrick Steve, von Stackelberg and Cournot Duopoly: Choosing Roles, 10.2307/2555388
- Fudenberg D, Tirole J (1991) Game theory. MIT Press, Cambridge
- Gal-Or Esther, First Mover and Second Mover Advantages, 10.2307/2526710
- Hamilton Jonathan H, Slutsky Steven M, Endogenous timing in duopoly games: Stackelberg or cournot equilibria, 10.1016/0899-8256(90)90012-j
- Heywood JS, McGinty M (2008) Leading and merging: convex costs, Stackelberg, and the merger paradox. South Econ J 74: 879–893
- Kaplan Todd R., Wettstein David, The possibility of mixed-strategy equilibria with constant-returns-to-scale technology under Bertrand competition, 10.1007/s101080050018
- Matsumura Toshihiro, Quantity-setting oligopoly with endogenous sequencing, 10.1016/s0167-7187(98)00021-6
- Osborne M, Rubinstein A (1994) A course in game theory. MIT Press, Cambridge
- Puu T., Chaos in duopoly pricing, 10.1016/0960-0779(91)90045-b
- Sherali Hanif D., A Multiple Leader Stackelberg Model and Analysis, 10.1287/opre.32.2.390
- Sherali Hanif D., Soyster Allen L., Murphy Frederic H., Stackelberg-Nash-Cournot Equilibria: Characterizations and Computations, 10.1287/opre.31.2.253
- Tasnádi Attila, A two-stage Bertrand–Edgeworth game, 10.1016/s0165-1765(99)00170-6
- Tirole J (1988) Theory of industrial organization. MIT Press, Cambridge
- Vives X (1999) Oligopoly pricing, Old ideas and new tools. MIT Press, Cambridge
- von Stackelberg H (1934) Marktform und Gleichgewicht. Springer, Berlin/Vienna
- Watt Richard, A Generalized Oligopoly Model, 10.1111/1467-999x.00135
Bibliographic reference |
Julien, Ludovic A.. A note on Stackelberg competition. In: Journal of Economics/ Zeitschrift fur Nationalokonomie, Vol. 103, no. 2, p. 171-187 (2011) |
Permanent URL |
http://hdl.handle.net/2078.1/163655 |