User menu

Impact of oxidative stress on ascorbate biosynthesis in Chlamydomonas via regulation of the VTC2 gene encoding a GDP-L-galactose phosphorylase

Bibliographic reference Urzica, Eugen I. ; Adler, Lital N. ; Page, M. Dudley ; Linster, Carole ; Arbing, Mark A. ; et. al. Impact of oxidative stress on ascorbate biosynthesis in Chlamydomonas via regulation of the VTC2 gene encoding a GDP-L-galactose phosphorylase. In: Journal of Biological Chemistry, Vol. 287, no. 17, p. 14234-14245 (2012)
Permanent URL
  1. Smirnoff N., Ascorbate biosynthesis and function in photoprotection, 10.1098/rstb.2000.0706
  2. Di Matteo, Comp. Biochem. Physiol. A, 134, S155 (2003)
  3. Renstrøm B., Grün M., Loewus F.A., Biosynthesis of L-Ascorbic Acid in Chlorella Pyrenoidosa, 10.1016/s0304-4211(83)80022-4
  4. Running J. A., The pathway of L-ascorbic acid biosynthesis in the colourless microalga Prototheca moriformis, 10.1093/jxb/erg207
  5. Helsper J. P., Kagan L., Hilby C. L., Maynard T. M., Loewus F. A., L-Ascorbic Acid Biosynthesis in Ochromonas danica, 10.1104/pp.69.2.465
  6. SHIGEOKA Shigeru, NAKANO Yoshihisa, KITAOKA Shozaburo, The biosynthetic pathway of L-ascorbic acid in Euglena gracilis Z., 10.3177/jnsv.25.299
  7. Gr�n Michael, Loewus Frank A., l-Ascorbic-acid biosynthesis in the euryhaline diatom Cyclotella cryptica, 10.1007/bf00392459
  8. Brenner C. (2007) in Encyclopedia of Life Sciences, pp. 1–6, John Wiley & Sons, Ltd., Chichester, UK
  9. Asada Kozi, THE WATER-WATER CYCLE IN CHLOROPLASTS: Scavenging of Active Oxygens and Dissipation of Excess Photons, 10.1146/annurev.arplant.50.1.601
  10. Watanabe Kentaroh, Suzuki Kiyoshi, Kitamura Shinichi, Characterization of a GDP-d-mannose 3″,5″-epimerase from rice, 10.1016/j.phytochem.2005.12.003
  11. Harris E. H. (2009) The Chlamydomonas Sourcebook, A Comprehensive Guide to Biology and Laboratory Use, 2nd Ed., Academic Press, San Diego
  12. Gill Sarvajeet Singh, Tuteja Narendra, Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants, 10.1016/j.plaphy.2010.08.016
  13. Fox, Methods Mol. Biol., 205, 99 (2003)
  14. Quinn Jeanette M., Merchant Sabeeha, [18] Copper-responsive gene expression during adaptation to copper deficiency, Methods in Enzymology (1998) ISBN:9780121821982 p.263-279, 10.1016/s0076-6879(98)97020-3
  15. Allen M. D., del Campo J. A., Kropat J., Merchant S. S., FEA1, FEA2, and FRE1, Encoding Two Homologous Secreted Proteins and a Candidate Ferrireductase, Are Expressed Coordinately with FOX1 and FTR1 in Iron-Deficient Chlamydomonas reinhardtii, 10.1128/ec.00205-07
  16. Schloss JefferyA., A Chlamydomonas gene encodes a G protein ? subunit-like polypeptide, 10.1007/bf00259410
  17. Craigie, J. Cell Sci., 54, 173 (1982)
  18. Langmead Ben, Trapnell Cole, Pop Mihai, Salzberg Steven L, Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, 10.1186/gb-2009-10-3-r25
  19. Mortazavi Ali, Williams Brian A, McCue Kenneth, Schaeffer Lorian, Wold Barbara, Mapping and quantifying mammalian transcriptomes by RNA-Seq, 10.1038/nmeth.1226
  20. Castruita Madeli, Casero David, Karpowicz Steven J., Kropat Janette, Vieler Astrid, Hsieh Scott I., Yan Weihong, Cokus Shawn, Loo Joseph A., Benning Christoph, Pellegrini Matteo, Merchant Sabeeha S., Systems Biology Approach inChlamydomonasReveals Connections between Copper Nutrition and Multiple Metabolic Steps, 10.1105/tpc.111.084400
  21. Whelan Simon, Goldman Nick, A General Empirical Model of Protein Evolution Derived from Multiple Protein Families Using a Maximum-Likelihood Approach, 10.1093/oxfordjournals.molbev.a003851
  22. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S., MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods, 10.1093/molbev/msr121
  23. Smirnoff Nicholas, Wheeler Glen L., Ascorbic Acid in Plants: Biosynthesis and Function, 10.1080/10409230008984166
  24. Dowdle John, Ishikawa Takahiro, Gatzek Stephan, Rolinski Susanne, Smirnoff Nicholas, Two genes in Arabidopsis thaliana encoding GDP-l-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability : Role of GDP-l-Gal phosphorylase in ascorbate biosynthesis, 10.1111/j.1365-313x.2007.03266.x
  25. Linster Carole L., Adler Lital N., Webb Kristofor, Christensen Kathryn C., Brenner Charles, Clarke Steven G., A Second GDP-l-galactose Phosphorylase inArabidopsisen Route to Vitamin C : COVALENT INTERMEDIATE AND SUBSTRATE REQUIREMENTS FOR THE CONSERVED REACTION, 10.1074/jbc.m802594200
  26. ISHIKAWA Takahiro, SHIGEOKA Shigeru, Recent Advances in Ascorbate Biosynthesis and the Physiological Significance of Ascorbate Peroxidase in Photosynthesizing Organisms, 10.1271/bbb.80062
  27. Wolucka Beata A., Van Montagu Marc, GDP-Mannose 3′,5′-Epimerase Forms GDP-L-gulose, a Putative Intermediate for thede NovoBiosynthesis of Vitamin C in Plants, 10.1074/jbc.m309135200
  28. Radzio Jessica A., Lorence Argelia, Chevone Boris I., Nessler Craig L., L-Gulono-1,4-lactone oxidase expression rescues vitamin C-deficient Arabidopsis (vtc) mutants, 10.1023/b:plan.0000023671.99451.1d
  29. Linster Carole L., Van Schaftingen Emile, Vitamin C : Biosynthesis, recycling and degradation in mammals, 10.1111/j.1742-4658.2006.05607.x
  30. Kondo Y., Inai Y., Sato Y., Handa S., Kubo S., Shimokado K., Goto S., Nishikimi M., Maruyama N., Ishigami A., Senescence marker protein 30 functions as gluconolactonase in L-ascorbic acid biosynthesis, and its knockout mice are prone to scurvy, 10.1073/pnas.0511225103
  31. Agius Fernanda, González-Lamothe Rocío, Caballero José L., Muñoz-Blanco Juan, Botella Miguel A., Valpuesta Victoriano, Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase, 10.1038/nbt777
  32. Ishikawa Takahiro, Nishikawa Hitoshi, Gao Youngshun, Sawa Yoshihiro, Shibata Hitoshi, Yabuta Yukinori, Maruta Takanori, Shigeoka Shigeru, The Pathway via D-Galacturonate/L-Galactonate Is Significant for Ascorbate Biosynthesis inEuglena gracilis : IDENTIFICATION AND FUNCTIONAL CHARACTERIZATION OF ALDONOLACTONASE, 10.1074/jbc.m803930200
  33. Müller-Moulé Patricia, An expression analysis of the ascorbate biosynthesis enzyme VTC2, 10.1007/s11103-008-9350-4
  34. Wheeler Glen L., Jones Mark A., Smirnoff Nicholas, The biosynthetic pathway of vitamin C in higher plants, 10.1038/30728
  35. Allen M. D., Kropat J., Tottey S., Del Campo J. A., Merchant S. S., Manganese Deficiency in Chlamydomonas Results in Loss of Photosystem II and MnSOD Function, Sensitivity to Peroxides, and Secondary Phosphorus and Iron Deficiency, 10.1104/pp.106.088609
  36. Fischer Beat B, Eggen Rik IL, Niyogi Krishna K, Characterization of singlet oxygen-accumulating mutants isolated in a screen for altered oxidative stress response in Chlamydomonas reinhardtii, 10.1186/1471-2229-10-279
  37. Ledford H. K., Chin B. L., Niyogi K. K., Acclimation to Singlet Oxygen Stress in Chlamydomonas reinhardtii, 10.1128/ec.00207-06
  38. Long Joanne C., Merchant Sabeeha S., Photo-oxidative Stress Impacts the Expression of Genes Encoding Iron Metabolism Components in Chlamydomonas†, 10.1111/j.1751-1097.2008.00451.x
  39. Glascott, Mol. Pharmacol., 48, 80 (1995)
  40. Daskalopoulos Rina, Korcok Jasminka, Tao Lei, Wilson John X., Accumulation of intracellular ascorbate from dehydroascorbic acid by astrocytes is decreased after oxidative stress and restored by propofol, 10.1002/glia.10099
  41. Foyer C. H., Noctor G., Ascorbate and Glutathione: The Heart of the Redox Hub, 10.1104/pp.110.167569
  42. Wolucka Beata A., Van Montagu Marc, The VTC2 cycle and the de novo biosynthesis pathways for vitamin C in plants: An opinion, 10.1016/j.phytochem.2007.08.034
  43. Adler Lital N., Gomez Tara A., Clarke Steven G., Linster Carole L., A Novel GDP-d-glucose Phosphorylase Involved in Quality Control of the Nucleoside Diphosphate Sugar Pool inCaenorhabditis elegansand Mammals, 10.1074/jbc.m111.238774
  44. Guranowski Andrzej, Wojdyła Anna Maria, Zimny Jarosław, Wypijewska Anna, Kowalska Joanna, Jemielity Jacek, Davis Richard E., Bieganowski Paweł, Dual activity of certain HIT-proteins:A. thalianaHint4 andC. elegansDcpS act on adenosine 5′-phosphosulfate as hydrolases (forming AMP) and as phosphorylases (forming ADP), 10.1016/j.febslet.2009.11.003
  45. Mori Shigetarou, Shibayama Keigo, Wachino Jun-ichi, Arakawa Yoshichika, Purification and molecular characterization of a novel diadenosine 5′,5′′′-P1,P4-tetraphosphate phosphorylase from Mycobacterium tuberculosis H37Rv, 10.1016/j.pep.2009.09.010
  46. Linster Carole L., Gomez Tara A., Christensen Kathryn C., Adler Lital N., Young Brian D., Brenner Charles, Clarke Steven G., ArabidopsisVTC2Encodes a GDP-l-Galactose Phosphorylase, the Last Unknown Enzyme in the Smirnoff-Wheeler Pathway to Ascorbic Acid in Plants, 10.1074/jbc.m702094200
  47. Muller-Moule P., Ascorbate-Deficient Mutants of Arabidopsis Grow in High Light Despite Chronic Photooxidative Stress, 10.1104/pp.103.032375
  48. Larkindale J., Heat Stress Phenotypes of Arabidopsis Mutants Implicate Multiple Signaling Pathways in the Acquisition of Thermotolerance, 10.1104/pp.105.062257
  49. Conklin P. L., Williams E. H., Last R. L., Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant., 10.1073/pnas.93.18.9970
  50. Filkowski Jody, Kovalchuk Olga, Kovalchuk Igor, Genome stability ofvtc1,tt4, andtt5 Arabidopsis thalianamutants impaired in protection against oxidative stress, 10.1111/j.1365-313x.2004.02020.x
  51. Chen Z., Increasing Tolerance to Ozone by Elevating Foliar Ascorbic Acid Confers Greater Protection against Ozone Than Increasing Avoidance, 10.1104/pp.105.062000
  52. Sanmartin, Planta, 216, 918 (2003)
  53. Alía Mario, Ramos Sonia, Mateos Raquel, Bravo Laura, Goya Luis, Response of the antioxidant defense system totert-butyl hydroperoxide and hydrogen peroxide in a human hepatoma cell line (HepG2) : Oxidative effect of t-BOOH and H2O2on HepG2, 10.1002/jbt.20061
  54. Zsigmond Laura, Tomasskovics Bálint, Deák Veronika, Rigó Gábor, Szabados László, Bánhegyi Gábor, Szarka András, Enhanced activity of galactono-1,4-lactone dehydrogenase and ascorbate–glutathione cycle in mitochondria from complex III deficient Arabidopsis, 10.1016/j.plaphy.2011.04.013
  55. YABUTA Yukinori, MARUTA Takanori, NAKAMURA Ayana, MIEDA Takahiro, YOSHIMURA Kazuya, ISHIKAWA Takahiro, SHIGEOKA Shigeru, Conversion ofL-Galactono-1,4-lactone toL-Ascorbate Is Regulated by the Photosynthetic Electron Transport Chain inArabidopsis, 10.1271/bbb.80284
  56. Laing W. A., Wright M. A., Cooney J., Bulley S. M., The missing step of the L-galactose pathway of ascorbate biosynthesis in plants, an L-galactose guanyltransferase, increases leaf ascorbate content, 10.1073/pnas.0701625104
  57. Leferink Nicole G. H., van den Berg Willy A. M., van Berkel Willem J. H., l-Galactono-γ-lactone dehydrogenase from Arabidopsis thaliana, a flavoprotein involved in vitamin C biosynthesis : Galactonolactone dehydrogenase from Arabidopsis, 10.1111/j.1742-4658.2007.06233.x
  58. Pineau Bernard, Layoune Ouardia, Danon Antoine, De Paepe Rosine, l-Galactono-1,4-lactone Dehydrogenase Is Required for the Accumulation of Plant Respiratory Complex I, 10.1074/jbc.m805320200
  59. Drahota, Physiol. Res., 54, 67 (2005)
  60. Takeda Toru, Ishikawa Takahiro, Shigeoka Shigeru, Metabolism of hydrogen peroxide by the scavenging system in Chlamydomonas reinhardtii, 10.1111/j.1399-3054.1997.tb03429.x
  61. Eltayeb Amin Elsadig, Kawano Naoyoshi, Badawi Ghazi Hamid, Kaminaka Hironori, Sanekata Takeshi, Shibahara Toshiyuki, Inanaga Shinobu, Tanaka Kiyoshi, Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses, 10.1007/s00425-006-0417-7
  62. Li, Physiol. Plant, 139, 421 (2010)
  63. Chen Z., Young T. E., Ling J., Chang S.-C., Gallie D. R., Increasing vitamin C content of plants through enhanced ascorbate recycling, 10.1073/pnas.0635176100
  64. Wang Zinan, Xiao Ying, Chen Wansheng, Tang Kexuan, Zhang Lei, Increased Vitamin C Content Accompanied by an Enhanced Recycling Pathway Confers Oxidative Stress Tolerance inArabidopsis, 10.1111/j.1744-7909.2010.00921.x
  65. May James M., Mendiratta Shalu, Hill Kristina E., Burk Raymond F., Reduction of Dehydroascorbate to Ascorbate by the Selenoenzyme Thioredoxin Reductase, 10.1074/jbc.272.36.22607
  66. Novoselov S. V., Non-animal origin of animal thioredoxin reductases: Implications for selenocysteine evolution and evolution of protein function through carboxy-terminal extensions, 10.1110/ps.0226503
  67. Hancock Robert D., Viola Roberto, Biosynthesis and Catabolism ofL-Ascorbic Acid in Plants, 10.1080/07352680591002165
  68. Novoselov S. V., Selenoproteins and selenocysteine insertion system in the model plant cell system, Chlamydomonas reinhardtii, 10.1093/emboj/cdf372
  69. Linster Carole L., Clarke Steven G., l-Ascorbate biosynthesis in higher plants: the role of VTC2, 10.1016/j.tplants.2008.08.005
  70. Smirnoff Nicholas, Conklin Patricia L, Loewus Frank A, BIOSYNTHESIS OFASCORBICACID INPLANTS: A Renaissance, 10.1146/annurev.arplant.52.1.437