User menu

Bioenergy farming using woody crops. A review

Bibliographic reference Rodriguez Pleguezuelo, Carmen Rocio ; Duran Zuazo, Victor Hugo ; Bielders, Charles ; Jimenez Bocanegra, Juan Antonio ; Perea Torres, Francisco ; et. al. Bioenergy farming using woody crops. A review. In: Agronomy for Sustainable Development : sciences des productions vegetales et de l'environnement,
Permanent URL http://hdl.handle.net/2078.1/156621
  1. AAE (2011) La biomasa en Andalucía. Agencia Andaluza de la Energía, Consejería de Economía, Innovación y Ciencia, Junta de Andalucía. Sevilla, Spain
  2. Abrahamson LP, Volk TA, Kopp RF, White EH, Ballard JL (2002) Willow biomass producer’s handbook. Syracuse, NY. http://www.esf.edu/willow/documents/ProducersHandbook.pdf . Accessed 24 April 2013
  3. Amichev Beyhan Y., Kurz Werner A., Smyth Carolyn, Rees Ken C. J., The carbon implications of large-scale afforestation of agriculturally marginal land with short-rotation willow in Saskatchewan, 10.1111/j.1757-1707.2011.01110.x
  4. Banse Martin, van Meijl Hans, Tabeau Andrzej, Woltjer Geert, Hellmann Fritz, Verburg Peter H., Impact of EU biofuel policies on world agricultural production and land use, 10.1016/j.biombioe.2010.09.001
  5. Berndes Göran, Hoogwijk Monique, van den Broek Richard, The contribution of biomass in the future global energy supply: a review of 17 studies, 10.1016/s0961-9534(02)00185-x
  6. Böhm C, Quinkenstein A, Freese D (2011) Yield prediction of young black locust (Robinia pseudoacacia L.) plantations for woody biomass production using allometric relations. Ann Forest Res 54:215–227
  7. Börjesson Pål, Berndes Göran, The prospects for willow plantations for wastewater treatment in Sweden, 10.1016/j.biombioe.2005.11.018
  8. Broeckx L.S., Verlinden M.S., Ceulemans R., Establishment and two-year growth of a bio-energy plantation with fast-growing Populus trees in Flanders (Belgium): Effects of genotype and former land use, 10.1016/j.biombioe.2012.03.005
  9. Busch Gerald, GIS-based Tools for Regional Assessments and Planning Processes Regarding Potential Environmental Effects of Poplar SRC, 10.1007/s12155-012-9224-0
  10. Butnar Isabela, Rodrigo Julio, Gasol Carles M., Castells Francesc, Life-cycle assessment of electricity from biomass: Case studies of two biocrops in Spain, 10.1016/j.biombioe.2010.07.013
  11. Cao Yang, Lehto Tarja, Piirainen Sirpa, Kukkonen Jussi V.K., Pelkonen Paavo, Effects of planting orientation and density on the soil solution chemistry and growth of willow cuttings, 10.1016/j.biombioe.2012.09.006
  12. Cerdá TE (2012) La biomasa en España: una fuente de energía renovable con gran futuro. Fundación Ideas. http://parlamentocientificodejovenes.files.wordpress.com/2013/10/dt-la_biomasa_en_espana-una_fuente_de_energia_renovable_de_gran_futuro.pdf . Accessed 15 August 2014
  13. Cerdá E, Caparrós A, Ovando P (2008) Bioenergía en la Unión Europea. Ekonomiaz 67:156–181
  14. Ciria CMP (2011) Desarrollo de los cultivos energéticos leñosos en España. Vida Rural 329
  15. de Andalucía J (2012) Ensayos con cultivos energéticos. Periodo, 2005–2010. Síntesis de resultados y principales conclusiones. Agencia de Gestión Agraria y Pesquera de Andalucía. CAPMA, Sevilla, Spain
  16. de Vries Bert J.M., van Vuuren Detlef P., Hoogwijk Monique M., Renewable energy sources: Their global potential for the first-half of the 21st century at a global level: An integrated approach, 10.1016/j.enpol.2006.09.002
  17. Deckmyn G., Muys B., Garcia Quijano J., Ceulemans R., Carbon sequestration following afforestation of agricultural soils: comparing oak/beech forest to short-rotation poplar coppice combining a process and a carbon accounting model, 10.1111/j.1365-2486.2004.00832.x
  18. Di Matteo G, Sperandio G, Verani S, Field performance of poplar for bioenergy in southern Europe after two coppicing rotations: effects of clone and planting density, 10.3832/ifor0628-005
  19. Dimitriou I., Rosenqvist H., Sewage sludge and wastewater fertilisation of Short Rotation Coppice (SRC) for increased bioenergy production—Biological and economic potential, 10.1016/j.biombioe.2010.11.010
  20. Dimitriou I., Rosenqvist H., Berndes G., Slow expansion and low yields of willow short rotation coppice in Sweden; implications for future strategies, 10.1016/j.biombioe.2011.09.006
  21. Dimitriou Ioannis, Mola-Yudego Blas, Aronsson Pär, Eriksson Jan, Changes in Organic Carbon and Trace Elements in the Soil of Willow Short-Rotation Coppice Plantations, 10.1007/s12155-012-9215-1
  22. Dinica Valentina, Biomass power: Exploring the diffusion challenges in Spain, 10.1016/j.rser.2008.10.002
  23. DJOMO SYLVESTRE NJAKOU, KASMIOUI OUAFIK EL, CEULEMANS REINHART, Energy and greenhouse gas balance of bioenergy production from poplar and willow: a review : ENERGY AND GREENHOUSE GAS BALANCE OF BIOENERGY PRODUCTION, 10.1111/j.1757-1707.2010.01073.x
  24. Dornburg V, Faaij A, Verweij P, Langeveld H, van de Ven G (2008) Biomass assessment: global biomass potentials and their links to food, water, biodiversity, energy demand and economy. Climate change scientific assessment and policy analysis (WAB) programme
  25. Durán Zuazo Victor Hugo, Pleguezuelo Carmen Rocío Rodríguez, Francia Martínez José Ramón, Martínez Raya Armando, Arroyo Panadero Lorenzo, Càrceles Rodríguez Belén, Navarro Moll Maria Conceptión, Benefits of plant strips for sustainable mountain agriculture, 10.1051/agro:2008020
  26. Durán ZVH, Jiménez BJA, Perea TF, Rodríguez PCR, Francia MJR (2014) Biomass yield potential of paulownia trees in a semi-arid Mediterranean environment (S Spain). Int J Renew Energy Res 4:789–793
  27. Ericsson T (1994) Nutrient dynamics and requirements of forest crops. N Z J For Sci 24:133–68
  28. Ericsson Karin, Rosenqvist Håkan, Ganko Ewa, Pisarek Marcin, Nilsson Lars, An agro-economic analysis of willow cultivation in Poland, 10.1016/j.biombioe.2005.09.002
  29. Esteban L.S., Carrasco J.E., Biomass resources and costs: Assessment in different EU countries, 10.1016/j.biombioe.2011.03.045
  30. Fernández J, Sánchez J, Esteban B (2009) Potential lignocellulosic biomass production from dedicated energy crops in marginalized agricultural lands of Spain. 17th European Biomass conference, Hamburg, Germany, pp 131–137
  31. Fiala Marco, Bacenetti Jacopo, Economic, energetic and environmental impact in short rotation coppice harvesting operations, 10.1016/j.biombioe.2011.07.004
  32. Fischer Günther, Prieler Sylvia, van Velthuizen Harrij, Berndes Göran, Faaij André, Londo Marc, de Wit Marc, Biofuel production potentials in Europe: Sustainable use of cultivated land and pastures, Part II: Land use scenarios, 10.1016/j.biombioe.2009.07.009
  33. Gabrielle Benoît, Nguyen The Nicolas, Maupu Pauline, Vial Estelle, Life cycle assessment of eucalyptus short rotation coppices for bioenergy production in southern France, 10.1111/gcbb.12008
  34. García Roberto, Pizarro Consuelo, Lavín Antonio G., Bueno Julio L., Characterization of Spanish biomass wastes for energy use, 10.1016/j.biortech.2011.10.004
  35. García-Maroto Inmaculada, Muñoz-Leiva Francisco, Rey-Pino Juan Miguel, Qualitative insights into the commercialization of wood pellets: The case of Andalusia, Spain, 10.1016/j.biombioe.2014.02.013
  36. Gasol Carles M., Martínez Sergio, Rigola Miquel, Rieradevall Joan, Anton Assumpció, Carrasco Juan, Ciria Pilar, Gabarrell Xavier, Feasibility assessment of poplar bioenergy systems in the Southern Europe, 10.1016/j.rser.2008.01.010
  37. Gasol Carles M., Brun Filippo, Mosso Angela, Rieradevall Joan, Gabarrell Xavier, Economic assessment and comparison of acacia energy crop with annual traditional crops in Southern Europe, 10.1016/j.enpol.2009.10.011
  38. Gerbens-Leenes W., Hoekstra A. Y., van der Meer T. H., The water footprint of bioenergy, 10.1073/pnas.0812619106
  39. Gexbioma (2013) General de Explotaciones para biomasa. Paulownia, la mejor alternativa para el futuro. http://www.gexbioma.com/paulownia.php . Accessed 28 August 2013
  40. Goldemberg J (2002) Brazilian energy initiative, world summit on sustainable development; Setembro. Joanesburgo, South Africa
  41. Gómez Antonio, Zubizarreta Javier, Dopazo César, Fueyo Norberto, Spanish energy roadmap to 2020: Socioeconomic implications of renewable targets, 10.1016/j.energy.2010.02.046
  42. González-García Sara, Gasol Carles Martinez, Moreira Maria Teresa, Gabarrell Xavier, i Pons Joan Rieradevall, Feijoo Gumersindo, Environmental assessment of black locust (Robinia pseudoacacia L.)-based ethanol as potential transport fuel, 10.1007/s11367-011-0272-z
  43. González-García Sara, Moreira Ma. Teresa, Feijoo Gumersindo, Environmental aspects of eucalyptus based ethanol production and use, 10.1016/j.scitotenv.2012.07.044
  44. González-García Sara, Moreira M. Teresa, Feijoo Gumersindo, Murphy Richard J., Comparative life cycle assessment of ethanol production from fast-growing wood crops (black locust, eucalyptus and poplar), 10.1016/j.biombioe.2012.01.028
  45. Gruenewald Holger, Brandt Barbara K.V., Schneider B. Uwe, Bens Oliver, Kendzia Gerald, Hüttl Reinhard F., Agroforestry systems for the production of woody biomass for energy transformation purposes, 10.1016/j.ecoleng.2006.09.012
  46. Grünewald Holger, Böhm Christian, Quinkenstein Ansgar, Grundmann Philipp, Eberts Jörg, von Wühlisch Georg, Robinia pseudoacacia L.: A Lesser Known Tree Species for Biomass Production, 10.1007/s12155-009-9038-x
  47. Guo L.B., Sims R.E.H., Horne D.J., Biomass production and nutrient cycling in Eucalyptus short rotation energy forests in New Zealand: II. Litter fall and nutrient return, 10.1016/j.biombioe.2005.11.017
  48. Hämäläinen Sari, Näyhä Annukka, Pesonen Hanna-Leena, Forest biorefineries – A business opportunity for the Finnish forest cluster, 10.1016/j.jclepro.2011.01.011
  49. Havlicková K, Weger J (2009) Short rotation coppice for energy purposes—economy conditions and landscape functions in the Czech Republic. Proceedings of ISES World Congress 2007 (Vol. 1–5). Beijing, China, pp 2482–2487
  50. Heinimö J., Junginger M., Production and trading of biomass for energy – An overview of the global status, 10.1016/j.biombioe.2009.05.017
  51. Herranz JL (2008) Estrategia para el uso energético de la biomasa forestal residual. Congreso Nacional de Medio Ambiente, CONAMA9
  52. Hoefnagels Ric, Resch Gustav, Junginger Martin, Faaij André, International and domestic uses of solid biofuels under different renewable energy support scenarios in the European Union, 10.1016/j.apenergy.2014.05.065
  53. HOOGWIJK M, FAAIJ A, EICKHOUT B, DEVRIES B, TURKENBURG W, Potential of biomass energy out to 2100, for four IPCC SRES land-use scenarios, 10.1016/j.biombioe.2005.05.002
  54. IDAE (2005) Plan de las energías renovables en España 2005–2010, Madrid
  55. IDAE (2011) Empleo asociado al impulso de las energías renovables. Estudio Técnico, Madrid
  56. IDAE Statistics (2012) Estudios, informes y estadísticas. http://www.idae.es/index.php/idpag.481/relcategoria.1368/relmenu.363/mod.pags/mem.detalle . Accessed 29 Nov 2013
  57. International Energy Agency (2010) World Energy Outlook 2010. International Energy Agency
  58. , Technology Roadmap: Biofuels for Transport, ISBN:9789264118461, 10.1787/9789264118461-en
  59. Iriarte C (2008) Caracterización del olmo (Ulmus pumila L.) como cultivo energético. Dissertation, Universidad Politécnica de Madrid
  60. Iriarte Alfredo, Rieradevall Joan, Gabarrell Xavier, Life cycle assessment of sunflower and rapeseed as energy crops under Chilean conditions, 10.1016/j.jclepro.2009.11.004
  61. Isebrands JG, Karnosky DF (2001) Environmental benefits of poplar culture. In: Dickmann DE, Isebrands JG, Eckenwalder JE, Richardson J (eds) Poplar culture in North America. NRC Research Press, Ottawa, pp 207–218
  62. Jianbo Lu, Energy balance and economic benefits of two agroforestry systems in northern and southern China, 10.1016/j.agee.2006.02.015
  63. Jiménez L, Rodríguez A, Ferrer JL, Pérez A, Angulo V (2005) Paulownia, a fast-growing plant, as a raw material for paper manufacturing. Afinidad 62:100–105
  64. Jiménez BJA, Perea TF, Lobo GJ, Pavón PL, Durán ZVH (2013a) Evaluación del cultivo del eucalipto para la producción de biomasa en Andalucía. Vida Rural 366:62–66
  65. Jiménez BJA, Lobo GJ, Pavón PL, Durán ZVH, Perea TF (2013b) Biomasa de cultivos energéticos para la producción sostenible de energía. Energética XXI 1356:53–55
  66. Johnson J, Coleman MUFS, Gesch R, Jaradat A, Mitchell R, Reicosky D (2007) Biomass bioenergy crops in the United States: a changing paradigm. Am J Plant Sci Biotechnol 1:1–18
  67. Jones J.M., Bridgeman T.G., Darvell L.I., Gudka B., Saddawi A., Williams A., Combustion properties of torrefied willow compared with bituminous coals, 10.1016/j.fuproc.2012.03.010
  68. Junginger M, van Dam J, Alakangas E, Virkkunen M, Vesterinen P, Veijonen K (2010) Solutions to overcome barriers in bioenergy markets in Europe-D2.2. VTT-R-01700
  69. Kalaycioglu Hulya, Deniz Ilhan, Hiziroglu Salim, Some of the properties of particleboard made from paulownia, 10.1007/s10086-004-0665-8
  70. Kellezi M, Stafasani M, Kortoci Y (2012) Evaluation of biomass supply chain from Robinia pseudoacacia L. SRF plantations on abandoned lands. J Life Sci 6:187–193
  71. Kumar Ritesh, Pandey K.K., Chandrashekar N., Mohan Sanjai, Study of age and height wise variability on calorific value and other fuel properties of Eucalyptus hybrid, Acacia auriculaeformis and Casuarina equisetifolia, 10.1016/j.biombioe.2010.12.031
  72. Yadav Niraj Kumarmangalam, Vaidya Brajesh Nanda, Henderson Kyle, Lee Jennifer Frost, Stewart Whitley Marshay, Dhekney Sadanand Arun, Joshee Nirmal, A Review of <i>Paulownia</i> Biotechnology: A Short Rotation, Fast Growing Multipurpose Bioenergy Tree, 10.4236/ajps.2013.411259
  73. Laborde, D (2011) Assessing the land use change consequences of European biofuels policies. International Food Policy Research Institute (IFPRI). Atlas Consortium
  74. Labrecque Michel, Teodorescu Traian I., High biomass yield achieved by Salix clones in SRIC following two 3-year coppice rotations on abandoned farmland in southern Quebec, Canada, 10.1016/s0961-9534(02)00192-7
  75. López Francisco, Pérez Antonio, Zamudio Minerva A.M., De Alva Hugo E., García Juan C., Paulownia as raw material for solid biofuel and cellulose pulp, 10.1016/j.biombioe.2012.05.010
  76. Lu Jianbo, Zhao Xingzheng, Ding Lizhong, Typical Patterns of Ecological Engineering in Southern China, 10.5141/jefb.2004.27.1.001
  77. MAGRAMA (2012) Anuario de estadística agraria. Ministerio de Agricultura Alimentación y Medio Ambiente, Madrid, Spain. http://www.magrama.gob.es/es/agricultura/estadisticas/Estadisticas-chopo.aspx#section . Accessed 25 November 2013
  78. Maier J, Vetter R (2004) Biomass yield and fuel characteristics of short-rotation coppice (Willow, Poplar, Empress tree), Institute for Land Management Compatible to Environmental Requirements, http://www.Landwirtschaft-bw.info/servlet/PB/-s/1wc52eejau6d25wkczz14bl9dr p219z/menu/1104921l2/index1109769478375 .
  79. Malik R, Biomass production of short-rotation bioenergy hardwood plantations affected by cover crops, 10.1016/s0961-9534(01)00017-4
  80. Manzone Marco, Airoldi Gianfranco, Balsari Paolo, Energetic and economic evaluation of a poplar cultivation for the biomass production in Italy, 10.1016/j.biombioe.2009.05.024
  81. Martínez GE, Lucas BME, Andrés AM, López SFR, García MFA, del Cerro BA (2010) Aprovechamiento energético de Paulownia spp. en el ámbito Mediterráneo. Rev Montes 102:5–11
  82. Matondi PB, Havnevik K, Beyene A (2011) Biofuels, Land Grabbing and Food Security in Africa Zed Books, London, New York
  83. McCracken A.R., Walsh L., Moore P.J., Lynch M., Cowan P., Dawson M., Watson S., Yield of willow (Salix spp.) grown in short rotation coppice mixtures in a long-term trial, 10.1111/j.1744-7348.2011.00488.x
  84. Mitchell C.P, Stevens E.A, Watters M.P, Short-rotation forestry – operations, productivity and costs based on experience gained in the UK, 10.1016/s0378-1127(98)00561-1
  85. Moiseyev A, Ince P (2000) Alternative scenarios on SRWC as a fiber source for pulp. In: Paper presented at the third biennial conference, Short-Rotation Woody Crops Operations Working Group, Syracuse, NY
  86. Mola-Yudego Blas, Trends and productivity improvements from commercial willow plantations in Sweden during the period 1986–2000, 10.1016/j.biombioe.2010.09.004
  87. OTTO S, LODDO D, ZANIN G, Weed-poplar competition dynamics and yield loss in Italian short-rotation forestry, 10.1111/j.1365-3180.2010.00763.x
  88. Pari Luigi, Civitarese Vincenzo, Giudice Angelo del, Assirelli Alberto, Spinelli Raffaele, Santangelo Enrico, Influence of chipping device and storage method on the quality of SRC poplar biomass, 10.1016/j.biombioe.2013.01.019
  89. Pedroli Bas, Elbersen Berien, Frederiksen Pia, Grandin Ulf, Heikkilä Raimo, Krogh Paul Henning, Izakovičová Zita, Johansen Anders, Meiresonne Linda, Spijker Joop, Is energy cropping in Europe compatible with biodiversity? – Opportunities and threats to biodiversity from land-based production of biomass for bioenergy purposes, 10.1016/j.biombioe.2012.09.054
  90. Pérez S., Renedo C.J., Ortiz A., Mañana M., Silió D., Energy evaluation of the Eucalyptus globulus and the Eucalyptus nitens in the north of Spain (Cantabria), 10.1016/j.tca.2006.08.009
  91. Pérez-Cruzado César, Merino Agustín, Rodríguez-Soalleiro Roque, A management tool for estimating bioenergy production and carbon sequestration in Eucalyptus globulus and Eucalyptus nitens grown as short rotation woody crops in north-west Spain, 10.1016/j.biombioe.2011.03.020
  92. Pérez CC, Sánchez RD, Rodríguez SR, Hernández MJ, Sánchez MM, Cañellas I, Sixto H (2013) Biomass production assessment from Populus spp. short-rotation irrigated crops in Spain. Bioenergy. doi: 10.1111/gcbb.12061
  93. Pettenella D, Masiero M (2007) Disponibilita di biomasse legnose forestali, agricole e industriali in Italia. In: Gargiulo T, Zoboli R (eds) Una nuova economia de legno-arredo tra industria, energía e cambianento climático. Tipomonza, Milan, pp 171–252
  94. Quinkenstein Ansgar, Freese Dirk, Böhm Christian, Tsonkova Penka, Hüttl Reinhard F., Agroforestry for Mine-Land Reclamation in Germany: Capitalizing on Carbon Sequestration and Bioenergy Production, Agroforestry - The Future of Global Land Use (2012) ISBN:9789400746756 p.313-339, 10.1007/978-94-007-4676-3_17
  95. Rédei K, Csiha I, Keserü Z (2011) Black locust (Robinia pseudoacacia L.) short-rotation crops under marginal site conditions. Acta Silv Lign Hung 7:125–132
  96. Rosenqvist H., Dawson M., Economics of willow growing in Northern Ireland, 10.1016/j.biombioe.2004.06.001
  97. Rosenqvist Håkan, Berndes Göran, Börjesson Pål, The prospects of cost reductions in willow production in Sweden, 10.1016/j.biombioe.2012.11.013
  98. Rosúa J.M., Pasadas M., Biomass potential in Andalusia, from grapevines, olives, fruit trees and poplar, for providing heating in homes, 10.1016/j.rser.2012.02.035
  99. Rowe Rebecca L., Hanley Mick E., Goulson Dave, Clarke Donna J., Doncaster C. Patrick, Taylor Gail, Potential benefits of commercial willow Short Rotation Coppice (SRC) for farm-scale plant and invertebrate communities in the agri-environment, 10.1016/j.biombioe.2010.08.046
  100. Ruttens Ann, Boulet Jana, Weyens Nele, Smeets Karen, Adriaensen Kristin, Meers Erik, Van Slycken Stijn, Tack Filip, Meiresonne Linda, Thewys Theo, Witters Nele, Carleer Robert, Dupae Joke, Vangronsveld Jaco, Short Rotation Coppice Culture of Willows and Poplars as Energy Crops on Metal Contaminated Agricultural Soils, 10.1080/15226514.2011.568543
  101. RWE (2013) http://www.rwe.com/web/cms/en/398786/rwe-innogy/technologies/biomass/spain/ . Accessed 14 October 2013
  102. Scarlat Nicolae, Dallemand Jean-Franc¸ois, Banja Manjola, Possible impact of 2020 bioenergy targets on European Union land use. A scenario-based assessment from national renewable energy action plans proposals, 10.1016/j.rser.2012.10.040
  103. Schmidt-Walter Paul, Lamersdorf Norbert P., Biomass Production with Willow and Poplar Short Rotation Coppices on Sensitive Areas—the Impact on Nitrate Leaching and Groundwater Recharge in a Drinking Water Catchment near Hanover, Germany, 10.1007/s12155-012-9237-8
  104. Scholz V, The growth productivity, and environmental impact of the cultivation of energy crops on sandy soil in Germany, 10.1016/s0961-9534(02)00036-3
  105. Schweier Janine, Becker Gero, Economics of poplar short rotation coppice plantations on marginal land in Germany, 10.1016/j.biombioe.2013.10.020
  106. Searchinger T., Heimlich R., Houghton R. A., Dong F., Elobeid A., Fabiosa J., Tokgoz S., Hayes D., Yu T.-H., Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change, 10.1126/science.1151861
  107. Sebastián NF, García GD, Rezeau A (2010) Energía de la biomasa (volumen I). Prensas Universitarias de Zaragoza
  108. Sevel Lisbeth, Nord-Larsen Thomas, Raulund-Rasmussen Karsten, Biomass production of four willow clones grown as short rotation coppice on two soil types in Denmark, 10.1016/j.biombioe.2012.06.030
  109. Sevigne Eva, Gasol Carles M., Brun Filippo, Rovira Laura, Pagés Josep Maria, Camps Francesc, Rieradevall Joan, Gabarrell Xavier, Water and energy consumption of Populus spp. bioenergy systems: A case study in Southern Europe, 10.1016/j.rser.2010.11.034
  110. SMEETS E, FAAIJ A, LEWANDOWSKI I, TURKENBURG W, A bottom-up assessment and review of global bio-energy potentials to 2050, 10.1016/j.pecs.2006.08.001
  111. Sochacki S.J., Harper R.J., Smettem K.R.J., Estimation of woody biomass production from a short-rotation bio-energy system in semi-arid Australia, 10.1016/j.biombioe.2007.06.020
  112. Solid Biomass Barometer (2012) EurObserv’ER. http://www.eurobserv-er.org/pdf/baro212biomass.pdf . Accessed 1 November 2013
  113. Spinelli Raffaele, Nati Carla, Magagnotti Natascia, Using modified foragers to harvest short-rotation poplar plantations, 10.1016/j.biombioe.2009.01.001
  114. Stone K.C., Hunt P.G., Cantrell K.B., Ro K.S., The potential impacts of biomass feedstock production on water resource availability, 10.1016/j.biortech.2009.10.037
  115. Styles David, Thorne Fiona, Jones Michael B., Energy crops in Ireland: An economic comparison of willow and Miscanthus production with conventional farming systems, 10.1016/j.biombioe.2007.10.012
  116. Tallis Matthew J., Casella Eric, Henshall Paul A., Aylott Matthew J., Randle Timothy J., Morison James I. L., Taylor Gail, Development and evaluation of ForestGrowth-SRC a process-based model for short rotation coppice yield and spatial supply reveals poplar uses water more efficiently than willow, 10.1111/j.1757-1707.2012.01191.x
  117. Tharakan P.J., Volk T.A., Abrahamson L.P., White E.H., Energy feedstock characteristics of willow and hybrid poplar clones at harvest age, 10.1016/s0961-9534(03)00054-0
  118. Lowthe-Thomas S.C., Slater F.M., Randerson P.F., Reducing the establishment costs of short rotation willow coppice (SRC) – A trial of a novel layflat planting system at an upland site in mid-Wales, 10.1016/j.biombioe.2010.01.011
  119. Upreti Bishnu Raj, van der Horst Dan, National renewable energy policy and local opposition in the UK: the failed development of a biomass electricity plant, 10.1016/s0961-9534(03)00099-0
  120. Vande Walle Inge, Van Camp Nancy, Van de Casteele Liesbet, Verheyen Kris, Lemeur Raoul, Short-rotation forestry of birch, maple, poplar and willow in Flanders (Belgium) I—Biomass production after 4 years of tree growth, 10.1016/j.biombioe.2007.01.019
  121. Veiras X, Soto A (2011) La conflictividad de las plantaciones de eucalipto en España y Portugal. Análisis y propuestas para solucionar la conflictividad ambiental y social de las plantaciones de eucalipto en la península Ibérica. Greenpeace, Madrid
  122. Verlinden M.S., Broeckx L.S., Van den Bulcke J., Van Acker J., Ceulemans R., Comparative study of biomass determinants of 12 poplar (Populus) genotypes in a high-density short-rotation culture, 10.1016/j.foreco.2013.06.062
  123. VOLK T, ABRAHAMSON L, NOWAK C, SMART L, THARAKAN P, WHITE E, The development of short-rotation willow in the northeastern United States for bioenergy and bioproducts, agroforestry and phytoremediation, 10.1016/j.biombioe.2006.03.001
  124. Wolf J, Bindraban P.S, Luijten J.C, Vleeshouwers L.M, Exploratory study on the land area required for global food supply and the potential global production of bioenergy, 10.1016/s0308-521x(02)00077-x
  125. Yin R., He Q., 10.1023/a:1005837729528
  126. ZHOU Zheng-Chao, SHANGGUAN Zhou-Ping, Soil Anti-Scouribility Enhanced by Plant Roots, 10.1111/j.1744-7909.2005.00067.x