Accès à distance ? S'identifier sur le proxy UCLouvain
Lactate racemase is a nickel-dependent enzyme activated by a widespread maturation system.
Primary tabs
Document type | Article de périodique (Journal article) – Article de recherche |
---|---|
Access type | Accès restreint |
Publication date | 2014 |
Language | Anglais |
Journal information | "Nature Communications" - Vol. 5, p. 3615 (2014) |
Peer reviewed | yes |
Publisher | Nature Publishing Group (London) |
e-issn | 2041-1723 |
Publication status | Publié |
Affiliations |
UCL
- SST/ISV - Institut des sciences de la vie UCL - SST/LIBST - Louvain Institute of Biomolecular Science and Technology |
Links |
- Okano Kenji, Tanaka Tsutomu, Ogino Chiaki, Fukuda Hideki, Kondo Akihiko, Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits, 10.1007/s00253-009-2280-5
- Thauer R. K., Bacteriol. Rev., 41, 100 (1977)
- Walsh C., Vancomycin resistance: decoding the molecular logic, 10.1126/science.8392747
- Goffin P., Deghorain M., Mainardi J.-L., Tytgat I., Champomier-Verges M.-C., Kleerebezem M., Hols P., Lactate Racemization as a Rescue Pathway for Supplying D-Lactate to the Cell Wall Biosynthesis Machinery in Lactobacillus plantarum, 10.1128/jb.187.19.6750-6761.2005
- Garvie E. I., Microbiol. Rev., 44, 106 (1980)
- Tatum Edward Lawrie, Peterson William Harold, Fred Edwin Broun, Enzymic racemization of optically active lactic acid, 10.1042/bj0301892
- Stetter K. O., Kandler O., Untersuchungen zur Entstehung von Dl-Milchs�ure bei Lactobacillen und Charakterisierung einer Milchs�ureracemase bei einigen Arten der Untergattung Streptobacterium, 10.1007/bf00417453
- Oren Aharon, Gurevich Peter, Diversity of lactate metabolism in halophilic archaea, 10.1139/m95-042
- Hino T., Appl. Environ. Microbiol., 59, 255 (1993)
- Gilmour M., Flint H. J., Mitchell W. J., Multiple lactate dehydrogenase activities of the rumen bacterium Selenomonas ruminantium, 10.1099/13500872-140-8-2077
- Nagar Mitesh, Narmandakh Ariun, Khalak Yuriy, Bearne Stephen L., Redefining the Minimal Substrate Tolerance of Mandelate Racemase. Racemization of Trifluorolactate, 10.1021/bi201188j
- Cava Felipe, Lam Hubert, de Pedro Miguel A., Waldor Matthew K., Emerging knowledge of regulatory roles of d-amino acids in bacteria, 10.1007/s00018-010-0571-8
- Richard John P., Amyes Tina L., On the importance of being zwitterionic: enzymatic catalysis of decarboxylation and deprotonation of cationic carbon, 10.1016/j.bioorg.2004.05.002
- Hiyama T., J. Biochem., 64, 99 (1968)
- KATAGIRI Hideo, SUGIMORI Tsunetake, IMAI Kazutami, On the Metabolism of Organic Acids by Clostridium acetobutylicum, 10.1271/bbb1961.25.281
- Dennis D., Biochem. Z., 338, 485 (1963)
- Cantwell Allan, Dennis Don, Lactate racemase. Direct evidence for an α-carbonyl intermediate, 10.1021/bi00699a009
- Bienert Gerd P., Desguin Benoît, Chaumont François, Hols Pascal, Channel-mediated lactic acid transport: a novel function for aquaglyceroporins in bacteria, 10.1042/bj20130388
- Rodionov D. A., Hebbeln P., Gelfand M. S., Eitinger T., Comparative and Functional Genomic Analysis of Prokaryotic Nickel and Cobalt Uptake Transporters: Evidence for a Novel Group of ATP-Binding Cassette Transporters, 10.1128/jb.188.1.317-327.2006
- Boer Jodi L., Mulrooney Scott B., Hausinger Robert P., Nickel-dependent metalloenzymes, 10.1016/j.abb.2013.09.002
- Giedroc David P., Cornish Peter V., Frameshifting RNA pseudoknots: Structure and mechanism, 10.1016/j.virusres.2008.06.008
- McCall Keith A., Fierke Carol A., Colorimetric and Fluorimetric Assays to Quantitate Micromolar Concentrations of Transition Metals, 10.1006/abio.2000.4706
- Tseng C. P., J. Bacteriol., 173, 4411 (1991)
- Li Yanjie, Zamble Deborah B., Nickel Homeostasis and Nickel Regulation: An Overview, 10.1021/cr900010n
- Andreeva A., Howorth D., Chandonia J.-M., Brenner S. E., Hubbard T. J. P., Chothia C., Murzin A. G., Data growth and its impact on the SCOP database: new developments, 10.1093/nar/gkm993
- Colpas Gerard J., Maroney Michael J., Bagyinka Csaba., Kumar Manoj., Willis William S., Suib Steven L., Mascharak Pradip K., Baidya Narayan., X-ray spectroscopic studies of nickel complexes, with application to the structure of nickel sites in hydrogenases, 10.1021/ic00005a010
- Teusink Bas, Wiersma Anne, Molenaar Douwe, Francke Christof, de Vos Willem M., Siezen Roland J., Smid Eddy J., Analysis of Growth ofLactobacillus plantarumWCFS1 on a Complex Medium Using a Genome-scale Metabolic Model, 10.1074/jbc.m606263200
- The Prokaryotes, Ch. 13, 354 (2006)
- The Prokaryotes, Ch. 22, 659 (2007)
- Call D. F., Logan B. E., Lactate Oxidation Coupled to Iron or Electrode Reduction by Geobacter sulfurreducens PCA, 10.1128/aem.06434-11
- Duncan S. H., Louis P., Flint H. J., Lactate-Utilizing Bacteria, Isolated from Human Feces, That Produce Butyrate as a Major Fermentation Product, 10.1128/aem.70.10.5810-5817.2004
- Zhang Yan, Rodionov Dmitry A, Gelfand Mikhail S, Gladyshev Vadim N, Comparative genomic analyses of nickel, cobalt and vitamin B12 utilization, 10.1186/1471-2164-10-78
- Gibrat Jean-Francois, Madej Thomas, Bryant Stephen H, Surprising similarities in structure comparison, 10.1016/s0959-440x(96)80058-3
- Lim L. W., J. Biol. Chem., 261, 15140 (1986)
- Kozbial Piotr Z, Mushegian Arcady R, 10.1186/1472-6807-5-19
- Kuchenreuther Jon M., Britt R. David, Swartz James R., New Insights into [FeFe] Hydrogenase Activation and Maturase Function, 10.1371/journal.pone.0045850
- Barton Bryan E., Rauchfuss Thomas B., Hydride-Containing Models for the Active Site of the Nickel−Iron Hydrogenases, 10.1021/ja105312p
- Dower W. J., Miller J. F., Ragsdale C. W., High efficiency transformation of E.coli by high voltage electroporation, 10.1093/nar/16.13.6127
- Lambert J. M., Bongers R. S., Kleerebezem M., Cre-lox-Based System for Multiple Gene Deletions and Selectable-Marker Removal in Lactobacillus plantarum, 10.1128/aem.01473-06
- Holo H., Appl. Environ. Microbiol., 55, 3119 (1989)
- Trower M., Methods in Molecular Biology, Vol. 31, 19 (1994)
- Ferain T., J. Bacteriol., 178, 5431 (1996)
- Stevens M. J. A., Wiersma A., de Vos W. M., Kuipers O. P., Smid E. J., Molenaar D., Kleerebezem M., Improvement of Lactobacillus plantarum Aerobic Growth as Directed by Comprehensive Transcriptome Analysis, 10.1128/aem.00136-08
- Bradford Marion M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, 10.1016/0003-2697(76)90527-3
- Jones L. J., Biotechniques, 34, 850 (2003)
- Shapiro Arnold L., Viñuela Eladio, V. Maizel Jacob, Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels, 10.1016/0006-291x(67)90391-9
- Duby Geoffrey, Degand Hervé, Faber Anne-Marie, Boutry Marc, The proteome complement of Nicotiana tabacum Bright-Yellow-2 culture cells, 10.1002/pmic.200900527
- Schmidt Thomas GM, Skerra Arne, The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins, 10.1038/nprot.2007.209
- Mueller-Dieckmann Jochen, The open-access high-throughput crystallization facility at EMBL Hamburg, 10.1107/s0907444906038121
- Kabsch W., Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants, 10.1107/s0021889893005588
- Panjikar Santosh, Parthasarathy Venkataraman, Lamzin Victor S., Weiss Manfred S., Tucker Paul A., Auto-Rickshaw: an automated crystal structure determination platform as an efficient tool for the validation of an X-ray diffraction experiment, 10.1107/s0907444905001307
- Schneider Thomas R., Sheldrick George M., Substructure solution withSHELXD, 10.1107/s0907444902011678
- Sheldrick G. M., Macromolecular phasing with SHELXE, 10.1524/zkri.217.12.644.20662
- McCoy Airlie J., Grosse-Kunstleve Ralf W., Adams Paul D., Winn Martyn D., Storoni Laurent C., Read Randy J., Phasercrystallographic software, 10.1107/s0021889807021206
- Murshudov G. N., Vagin A. A., Dodson E. J., Refinement of Macromolecular Structures by the Maximum-Likelihood Method, 10.1107/s0907444996012255
- Collaborative Computational Project, Number 4, The CCP4 suite: programs for protein crystallography, 10.1107/s0907444994003112
- Terwilliger Thomas, SOLVE and RESOLVE: automated structure solution, density modification and model building, 10.1107/s0909049503023938
- Morris Richard J., Perrakis Anastassis, Lamzin Victor S., ARP⧸wARP and Automatic Interpretation of Protein Electron Density Maps, Methods in Enzymology (2003) ISBN:9780121827779 p.229-244, 10.1016/s0076-6879(03)74011-7
- Emsley Paul, Cowtan Kevin, Coot: model-building tools for molecular graphics, 10.1107/s0907444904019158
- Webb S. M., SIXPack a Graphical User Interface for XAS Analysis Using IFEFFIT, 10.1238/physica.topical.115a01011
- Ravel B., Newville M., ATHENA,ARTEMIS,HEPHAESTUS: data analysis for X-ray absorption spectroscopy usingIFEFFIT, 10.1107/s0909049505012719
- Newville Matthew, EXAFS analysis usingFEFFandFEFFIT, 10.1107/s0909049500016290
- Zabinsky S. I., Rehr J. J., Ankudinov A., Albers R. C., Eller M. J., Multiple-scattering calculations of x-ray-absorption spectra, 10.1103/physrevb.52.2995
- Engh R. A., Huber R., Accurate bond and angle parameters for X-ray protein structure refinement, 10.1107/s0108767391001071
- Blackburn N. J., J. Biol. Chem., 266, 23120 (1991)
- Ferreira Gloria C., Franco Ricardo, Mangravita Arianna, George Graham N., Unraveling the Substrate−Metal Binding Site of Ferrochelatase: An X-ray Absorption Spectroscopic Study†, 10.1021/bi015814m
- Martin-Diaconescu Vlad, Bellucci Matteo, Musiani Francesco, Ciurli Stefano, Maroney Michael J., Unraveling the Helicobacter pylori UreG zinc binding site using X-ray absorption spectroscopy (XAS) and structural modeling, 10.1007/s00775-011-0857-9
- Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., Thompson J.D., Gibson T.J., Higgins D.G., Clustal W and Clustal X version 2.0, 10.1093/bioinformatics/btm404
- Saitou N., Mol. Biol. Evol., 4, 406 (1987)
Bibliographic reference | Desguin, Benoît ; Goffin, Philippe ; Viaene, Eric ; Kleerebezem, Michiel ; Martin-Diaconescu, Vlad ; et. al. Lactate racemase is a nickel-dependent enzyme activated by a widespread maturation system.. In: Nature Communications, Vol. 5, p. 3615 (2014) |
---|---|
Permanent URL | http://hdl.handle.net/2078.1/156031 |