User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

Analytical theory of a lunar artificial satellite with third body perturbations

  1. Brouwer D. (1959). Solution of the problem of artificial satellite theory without air drag. Astron. J. 64:378–397
  2. Chapront-Touzé, M., Chapront, J.: Lunar Tables and Programs 4000 BC to AD 8000. Willmann- Bell. (1991)
  3. De Saedeleer, B., Henrard, J.: Orbit of a lunar artificial satellite: analytical theory of perturbations. IAU Colloq. 196: Transits of Venus: New Views of the Solar System and Galaxy. pp. 254–262 (2005)
  4. De Saedeleer, B., Henrard, J.: The combined effect of J 2 and C 22 on the critical inclination of a lunar orbiter’. Adv. Space Res. 37(1): 80–87 (2006). The Moon and Near-Earth Objects. Also available as http://dx.doi.org/10.1016/j.asr.2005.06.052
  5. De Saedeleer, B.: Analytical theory of an artificial satellite of the Moon. In: Belbruno, E., Gurfil, P. (eds.) Astrodynamics, Space Missions, and Chaos, of the Annals of the New York Academy of Sciences. Proceedings of the Conference New Trends in Astrodynamics and Applications, January 20-22, 2003, Vol. 1017, pp. 434–449. Washington (2004)
  6. De Saedeleer B. (2005). Complete zonal problem of the artificial satellite: generic compact analytic first order in closed form. Celest. Mech. Dynam. Astron. 91:239–268
  7. Deprit A. (1969). Canonical transformations depending on a small parameter. Celest. Mech. 1:12–30
  8. Henrard, J.: The algorithm of the inverse for Lie transform. In: Szebehely, V., Tapley, B. (eds.) ASSL: Recent Advances in Dynamical Astronomy, Vol. 39, pp. 248–257. Dordrecht (1973)
  9. Jefferys W. (1971). Automated, closed form integration of formulas in elliptic motion. Celest. Mech. 3:390–394
  10. Jupp A. H., The critical inclination problem ? 30 years of progress, 10.1007/bf01234560
  11. Knežević Z., Milani A. (1995). Perturbation theory for low satellites: an application. Bull. Astron. Belgrade 152:35–48
  12. Knežević Z., Milani A. (1998). Orbit maintenance of a lunar polar orbiter. Planet. Space Sci. 46:1605–1611
  13. Konopliv, A. S., Sjogren, W.L., Wimberly, R.N., Cook, R.A., Vijayaraghavan, A.: A high resolution lunar gravity field and predicted orbit behavior. In Advances in the Astronautical Sciences, Astrodynamics (AAS/AIAA Astrodynamics Specialist Conference, Pap. # AAS 93–622, Victoria, B.C.), Vol. 85, pp. 1275–1295 (1993)
  14. Kozai Y. (1962). Second-order solution of artificial satellite theory without air drag. Astron. J. 67:446–461
  15. Liu L., Wang X. (2000). On the orbital lifetime of high-altitude satellites. Chinese Astron, Astrophys. 24:284–288
  16. Milani, A., Knežević, Z.: Selenocentric proper elements: A tool for lunar satellite mission analysis. Final Report of a study conducted for ESA, ESTEC, Noordwijk (1995)
  17. Oesterwinter C. (1970). The motion of a lunar satellite. Celest. Mech. 1:368–436
  18. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. (1986). Numerical Recipes in Fortran 77—The Art of Scientific Computing. Cambridge University Press, Cambridge
  19. Roy A. (1968). The theory of the motion of an artificial lunar satellite I. Development of the disturbing function. Icarus 9:82–132
  20. Shniad H. (1970). The equivalence of von Zeipel mappings and Lie transforms. Celest. Mech. 2:114–120
  21. Steichen D. (1998a). An averaging method to study the motion of lunar artificial satellites—I: Disturbing function. Celest. Mech. Dynam. Astron. 68:205–224
  22. Steichen D. (1998b). An averaging method to study the motion of lunar artificial satellites—II: Averaging and applications. Celest. Mech. Dynam. Astron. 68:225–247
  23. Szebehely V. (1989). Adventures in Celestial Mechanics. University of Texas Press, Texas
Bibliographic reference De Saedeleer, Bernard. Analytical theory of a lunar artificial satellite with third body perturbations. In: Celestial Mechanics and Dynamical Astronomy : an international journal of space dynamics, Vol. 95, no.1-4, p. 407-423 (2006)
Permanent URL http://hdl.handle.net/2078.1/154409