Radoux, Julien
Lamarche, Céline
Van Bogaert, Eric
Bontemps, Sophie
Brockmann, Carsten
Defourny, Pierre
Land cover is one of the essential climate variables of the ESA Climate Change Initiative (CCI). In this context, the Land Cover CCI (LC CCI) project aims at building global land cover maps suitable for climate modeling based on Earth observation by satellite sensors. The challenge is to generate a set of successive maps that are both accurate and consistent over time. To do so, operational methods for the automated classification of optical images are investigated. The proposed approach consists of a locally trained classification using an automated selection of training samples from existing, but outdated land cover information. Combinations of local extraction (based on spatial criteria) and self-cleaning of training samples (based on spectral criteria) are quantitatively assessed. Two large study areas, one in Eurasia and the other in South America, are considered. The proposed morphological cleaning of the training samples leads to higher accuracies than the statistical outlier removal in the spectral domain. An optimal neighborhood has been identified for the local sample extraction. The results are coherent for the two test areas, showing an improvement of the overall accuracy compared with the original reference datasets and a significant reduction of macroscopic errors. More importantly, the proposed method partly controls the reliability of existing land cover maps as sources of training samples for supervised classification.
- Hollmann R., Merchant C. J., Saunders R., Downy C., Buchwitz M., Cazenave A., Chuvieco E., Defourny P., de Leeuw G., Forsberg R., Holzer-Popp T., Paul F., Sandven S., Sathyendranath S., van Roozendael M., Wagner W., The ESA Climate Change Initiative: Satellite Data Records for Essential Climate Variables, 10.1175/bams-d-11-00254.1
- DEFRIES R. S., TOWNSHEND J. R. G., NDVI-derived land cover classifications at a global scale, 10.1080/01431169408954345
- De Fries R. S., Hansen M., Townshend J. R. G., Sohlberg R., Global land cover classifications at 8 km spatial resolution: The use of training data derived from Landsat imagery in decision tree classifiers, 10.1080/014311698214235
- Loveland T. R., Reed B. C., Brown J. F., Ohlen D. O., Zhu Z., Yang L., Merchant J. W., Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data, 10.1080/014311600210191
- Friedl Mark A., Sulla-Menashe Damien, Tan Bin, Schneider Annemarie, Ramankutty Navin, Sibley Adam, Huang Xiaoman, MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets, 10.1016/j.rse.2009.08.016
- Bontemps, 243 (2012)
- Colditz R.R., Schmidt M., Conrad C., Hansen M.C., Dech S., Land cover classification with coarse spatial resolution data to derive continuous and discrete maps for complex regions, 10.1016/j.rse.2011.07.010
- Hansen M. C., Defries R. S., Townshend J. R. G., Sohlberg R., Global land cover classification at 1 km spatial resolution using a classification tree approach, 10.1080/014311600210209
- Muchoney, Photogramm. Eng. Remote Sens, 65, 1061 (1999)
- Pal Mahesh, Mather P. M., Some issues in the classification of DAIS hyperspectral data, 10.1080/01431160500185227
- Foody G. M., Arora M. K., An evaluation of some factors affecting the accuracy of classification by an artificial neural network, 10.1080/014311697218764
- Tuia D., Pasolli E., Emery W.J., Using active learning to adapt remote sensing image classifiers, 10.1016/j.rse.2011.04.022
- Brodley, 1, 799 (1996)
- Vancutsem C., Bicheron P., Cayrol P., Defourny P., An assessment of three candidate compositing methods for global MERIS time series, 10.5589/m07-056
- Di Gregorio, 1 (2000)
- Herold M., Mayaux P., Woodcock C.E., Baccini A., Schmullius C., Some challenges in global land cover mapping: An assessment of agreement and accuracy in existing 1 km datasets, 10.1016/j.rse.2007.11.013
- Bontemps Sophie, Bogaert Patrick, Titeux Nicolas, Defourny Pierre, An object-based change detection method accounting for temporal dependences in time series with medium to coarse spatial resolution, 10.1016/j.rse.2008.03.013
- Hansen Matthew C., Loveland Thomas R., A review of large area monitoring of land cover change using Landsat data, 10.1016/j.rse.2011.08.024
- Vancutsem C., Defourny P., A decision support tool for the optimization of compositing parameters, 10.1080/01431160802036375
- Bruzzone L., Roli F., Serpico S.B., An extension of the Jeffreys-Matusita distance to multiclass cases for feature selection, 10.1109/36.477187
- Cortes Corinna, Vapnik Vladimir, Support-vector networks, 10.1007/bf00994018
- Chih-Wei Hsu, Chih-Jen Lin, A comparison of methods for multiclass support vector machines, 10.1109/72.991427
- Soille (1999)
- Desclée Baudouin, Bogaert Patrick, Defourny Pierre, Forest change detection by statistical object-based method, 10.1016/j.rse.2006.01.013
- Radoux Julien, Defourny Pierre, Automated Image-to-Map Discrepancy Detection using Iterative Trimming, 10.14358/pers.76.2.173
- Colditz René R., López Saldaña Gerardo, Maeda Pedro, Espinoza Jesús Argumedo, Tovar Carmen Meneses, Hernández Arturo Victoria, Benítez Carlos Zermeño, Cruz López Isabel, Ressl Rainer, Generation and analysis of the 2005 land cover map for Mexico using 250m MODIS data, 10.1016/j.rse.2012.04.021
- Defourny, 207 (2012)
- DeFries R, Multiple Criteria for Evaluating Machine Learning Algorithms for Land Cover Classification from Satellite Data, 10.1016/s0034-4257(00)00142-5
- Mayaux P., Eva H., Gallego J., Strahler A.H., Herold M., Agrawal S., Naumov S., De Miranda E.E., Di Bella C.M., Ordoyne C., Kopin Y., Roy P.S., Validation of the global land cover 2000 map, 10.1109/tgrs.2006.864370
- Strahler, GOFC-GOLD Rep, 25, 1 (2006)
- Blanco Paula D., Colditz Rene R., López Saldaña Gerardo, Hardtke Leonardo A., Llamas Ricardo M., Mari Nicolás A., Fischer Angeles, Caride Constanza, Aceñolaza Pablo G., del Valle Héctor F., Lillo-Saavedra Mario, Coronato Fernando, Opazo Sergio A., Morelli Fabiano, Anaya Jesús A., Sione Walter F., Zamboni Pamela, Arroyo Victor Barrena, A land cover map of Latin America and the Caribbean in the framework of the SERENA project, 10.1016/j.rse.2012.12.025
- Schneider Annemarie, Friedl Mark A., Potere David, Mapping global urban areas using MODIS 500-m data: New methods and datasets based on ‘urban ecoregions’, 10.1016/j.rse.2010.03.003
- Pal M., Mather P. M., Support vector machines for classification in remote sensing, 10.1080/01431160512331314083
- Mountrakis Giorgos, Im Jungho, Ogole Caesar, Support vector machines in remote sensing: A review, 10.1016/j.isprsjprs.2010.11.001
- Foody G.M., Mathur A., A relative evaluation of multiclass image classification by support vector machines, 10.1109/tgrs.2004.827257
Bibliographic reference |
Radoux, Julien ; Lamarche, Céline ; Van Bogaert, Eric ; Bontemps, Sophie ; Brockmann, Carsten ; et. al. Automated Training Sample Extraction for Global Land Cover Mapping. In: Remote Sensing, Vol. 6, no.5, p. 3965-3987 (2014) |
Permanent URL |
http://hdl.handle.net/2078.1/143085 |