User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

Modelling root–soil interactions using three–dimensional models of root growth, architecture and function

  1. E., Agro-Process Intensification through Synthetic Rhizosphere Media for Nitrogen Fixation and Yield Enhancement in Plants, 10.3844/ajabssp.2012.150.172
  2. Ao Junhua, Fu Jiabing, Tian Jiang, Yan Xiaolong, Liao Hong, Genetic variability for root morph-architecture traits and root growth dynamics as related to phosphorus efficiency in soybean, 10.1071/fp09215
  3. Baldwin J. P., Nye P. H., Tinker P. B., Uptake of solutes by multiple root systems from soil : III—A model for calculating the solute uptake by a randomly dispersed root system developing in a finite volume of soil, 10.1007/bf00010701
  4. Bates Terence R., Lynch Jonathan P., The Efficiency of Arabidopsis thaliana (Brassicaceae) Root Hairs in Phosphorus Acquisition, 10.2307/2656995
  5. Bear Jacob, Cheng Alexander H.-D., Modeling Groundwater Flow and Contaminant Transport, ISBN:9781402066818, 10.1007/978-1-4020-6682-5
  6. Bechtold M, Vanderborght J, Ippisch O, Vereecken H (2011) Efficient random walk particle tracking algorithm for advective-dispersive transport in media with discontinuous dispersion coefficients and water contents. Water Res 47:W10526
  7. Bengough A. Glyn, Root elongation is restricted by axial but not by radial pressures: so what happens in field soil?, 10.1007/s11104-012-1428-8
  8. Bengough A. G., Mackenzie C. J., Diggle A. J., Relations between root length densities and root intersections with horizontal and vertical planes using root growth modelling in 3-dimensions, 10.1007/bf00010353
  9. Bengough A. Glyn, McKenzie B. M., Hallett P. D., Valentine T. A., Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits, 10.1093/jxb/erq350
  10. Bernier Jérôme, Serraj Rachid, Kumar Arvind, Venuprasad Ramaiah, Impa Somayanda, R.P. Veeresh Gowda, Oane Rowena, Spaner Dean, Atlin Gary, The large-effect drought-resistance QTL qtl12.1 increases water uptake in upland rice, 10.1016/j.fcr.2008.07.010
  11. Bidel L, MassFlowDyn I: A Carbon Transport and Partitioning Model for Root System Architecture, 10.1006/anbo.2000.1149
  12. Bingham Ian J., Wu Lianhai, Simulation of wheat growth using the 3D root architecture model SPACSYS: Validation and sensitivity analysis, 10.1016/j.eja.2011.01.003
  13. Bingham IJ, Rees RM, Bengough AG (2009) Influence of soil compaction on the dynamics of root growth and mortality in spring barley. International symposium “root research and applications” RootRAP, 2–4 Sept 2009. Boku, Vienna, pp 148–4
  14. Bohn M., Novais J., Fonseca R., Tuberosa R., Grift T. E., Genetic evaluation of root complexity in maize, 10.1556/aagr.54.2006.3.3
  15. Brady D.J., Wenzel C.L., Fillery I.R.P., Gregory P.J., Root growth and nitrate uptake by wheat (Triticum aestivumL.) following wetting of dry surface soil, 10.1093/jxb/46.5.557
  16. Brück HH, Becker HC, Sattelmacher B (1992) Phosphate efficiencies of two maize inbred lines. In: Kutschera L, Hüble E, Lichtenegger E, Persson H, Sobotik M (eds) Root ecology and its practical applications. 3rd ISRR Symposium, Vienna, Austria, pp 193–196
  17. Burton Amy L., Williams Michael, Lynch Jonathan P., Brown Kathleen M., RootScan: Software for high-throughput analysis of root anatomical traits, 10.1007/s11104-012-1138-2
  18. Burton AL, Brown KM, Lynch JP (2013) Phenotypic diversity of root anatomical and architectural traits in Zea species. Crop Sci. doi: 10.2135/cropsci2012.07.0440
  19. Campbell B. D., Grime J. P., Mackey J. M. L., A trade-off between scale and precision in resource foraging, 10.1007/bf00320417
  20. Chandra K, Kumar N, Chand G (2010) Studies on mycorrhizal inoculation on dry matter yield and root colonization of some medicinal plants grown in stress and forest soils. J Environ Biol 31:975–979
  21. Chen W, Dunbabin V, Bell R, Brennan R, Bowden B (2008) Simulating and understanding root growth using ROOTMAP to guide phosphorus fertiliser placement in wide row lupin cropping systems. In: Lupins for health and wealth - Proceedings of the 12th International Lupin Conference, 14–18 Sept, 2008, Fremantle, WA. International Lupin Association, Canterbury, pp 368–372
  22. Chen Ying Long, Dunbabin Vanessa M., Postma Johannes A., Diggle Art J., Palta Jairo A., Lynch Jonathan P., Siddique Kadambot H. M., Rengel Zed, Phenotypic variability and modelling of root structure of wild Lupinus angustifolius genotypes, 10.1007/s11104-011-0939-z
  23. Clark R. T., MacCurdy R. B., Jung J. K., Shaff J. E., McCouch S. R., Aneshansley D. J., Kochian L. V., Three-Dimensional Root Phenotyping with a Novel Imaging and Software Platform, 10.1104/pp.110.169102
  24. Clausnitzer V, Hopmans JW (1993) An algorithm for three–dimensional simultaneous modelling of root growth and transient water flow. Land, air and water resources paper no. 100022. Department of Land, Air and Water Resources, University of California, Davis, pp 1–108
  25. Clausnitzer V., Hopmans J. W., Simultaneous modeling of transient three-dimensional root growth and soil water flow, 10.1007/bf00010082
  26. Collet Catherine, Löf Magnus, Pagès Loïc, Root System Development of Oak Seedlings Analysed using an Architectural Model. Effects of Competition with Grass, 10.1007/s11104-005-2419-9
  27. Couvreur V., Vanderborght J., Javaux M., A simple three-dimensional macroscopic root water uptake model based on the hydraulic architecture approach, 10.5194/hess-16-2957-2012
  28. de Dorlodot Sophie, Forster Brian, Pagès Loïc, Price Adam, Tuberosa Roberto, Draye Xavier, Root system architecture: opportunities and constraints for genetic improvement of crops, 10.1016/j.tplants.2007.08.012
  29. de Willigen Peter, van Dam Jos C., Javaux Mathieu, Heinen Marius, Root Water Uptake as Simulated by Three Soil Water Flow Models, 10.2136/vzj2012.0018
  30. Deans J. D., Ford E. D., Modelling root structure and stability, 10.1007/bf02182654
  31. Diggle A. J., ROOTMAP—a model in three-dimensional coordinates of the growth and structure of fibrous root systems, 10.1007/bf02376780
  32. Diggle A.J, Rootmap: a root growth model, 10.1016/0378-4754(88)90121-8
  33. Diggle AJ (1988c) ROOTMAP2.1 – a root growth simulation program. Department of Agriculture Western Australia, Western Australia
  34. Diggle AJ (1990) Interaction between mineral nitrogen and growth of wheat roots in a leaching environment. PhD, The University of Western Australia, Perth
  35. Diggle AJ (1996) Developments in architectural models of root systems and the potential for their application to intercropping. In: Ito O, Johansen C, Adu–Gyamfi JJ, Katayama K, Kumar Rao JVDK, Rego TJ (eds) Dynamics of roots and nitrogen in cropping systems of the semi–arid tropics. Japan International Research Center for Agricultural Sciences, Japan, pp 559–571
  36. Dinkelaker Barbara, Hengeler Christine, Marschner H., Distribution and Function of Proteoid Roots and other Root Clusters, 10.1111/j.1438-8677.1995.tb00850.x
  37. Douds David D., Nagahashi Gerald, Reider Carolyn, Hepperly Paul R., Choosing a Mixture Ratio for the On-Farm Production of AM Fungus Inoculum In Mixtures of Compost and Vermiculite, 10.1080/1065657x.2008.10702355
  38. DOUSSAN C, Modelling of the Hydraulic Architecture of Root Systems: An Integrated Approach to Water Absorption—Model Description, 10.1006/anbo.1997.0540
  39. Doussan Claude, Pagès Loïc, Pierret Alain, Soil exploration and resource acquisition by plant roots: an architectural and modelling point of view, 10.1051/agro:2003027
  40. Doussan Claude, Pierret Alain, Garrigues Emmanuelle, Pagès Loïc, Water Uptake by Plant Roots: II – Modelling of Water Transfer in the Soil Root-system with Explicit Account of Flow within the Root System – Comparison with Experiments, 10.1007/s11104-004-7904-z
  41. Draye X, Pagès L (2007) CrossTalk: a simulation platform for the linking of existing soil, plant and atmosphere models. In: Proceeding of international symposium on plant growth modeling and applications. IEEE Computer Society, Los Alamitos, pp 93–100
  42. Draye Xavier, Kim Yangmin, Lobet Guillaume, Javaux Mathieu, Model-assisted integration of physiological and environmental constraints affecting the dynamic and spatial patterns of root water uptake from soils, 10.1093/jxb/erq077
  43. DREW M. C., SAKER L. R., Nutrient Supply and the Growth of the Seminal Root System in Barley : II. LOCALIZED, COMPENSATORY INCREASES IN LATERAL ROOT GROWTH AND RATES OP NITRATE UPTAKE WHEN NITRATE SUPPLY IS RESTRICTED TO ONLY PART OF THE ROOT SYSTEM, 10.1093/jxb/26.1.79
  44. DREW M. C., SAKER L. R., ASHLEY T. W., Nutrient Supply and the Growth of the Seminal Root System in Barley : I. THE EFFECT OF NITRATE CONCENTRATION ON THE GROWTH OF AXES AND LATERALS, 10.1093/jxb/24.6.1189
  45. Dunbabin Vanessa, Simulating the role of rooting traits in crop-weed competition, 10.1016/j.fcr.2007.03.014
  46. Dunbabin V., Rengel Z., Diggle A., 10.1071/ar00098
  47. Dunbabin V., Rengel Z., Diggle A., 10.1071/ar00099
  48. Dunbabin Vanessa M., Diggle Art J., Rengel Zdenko, van Hugten Robert, 10.1023/a:1014939512104
  49. Dunbabin Vanessa M., Diggle Art J., Rengel Zdenko, 10.1023/a:1014952728942
  50. DUNBABIN V., DIGGLE A., RENGEL Z., Is there an optimal root architecture for nitrate capture in leaching environments?, 10.1046/j.1365-3040.2003.01015.x
  51. Dunbabin V, Rengel Z, Diggle A (2003b) Root architecture and nutrient capture – the complex riddle of what constitutes optimality of root form and function. In: Lynch JM, Schepers JS, Unver I (eds) Innovative soil-plant systems for sustainable agricultural practices. Organisation for Economic Co–operation and Development (OECD), Paris, pp 2–16
  52. Dunbabin V., Rengel Z., Diggle A. J., Simulating form and function of root systems: efficiency of nitrate uptake is dependent on root system architecture and the spatial and temporal variability of nitrate supply, 10.1111/j.0269-8463.2004.00827.x
  53. Dunbabin Vanessa M., McDermott Sean, Bengough A. Glyn, Upscaling from Rhizosphere to Whole Root System: Modelling the Effects of Phospholipid Surfactants on Water and Nutrient Uptake, 10.1007/s11104-005-0866-y
  54. Dunbabin V. M., Armstrong R. D., Officer S. J., Norton R. M., Identifying fertiliser management strategies to maximise nitrogen and phosphorus acquisition by wheat in two contrasting soils from Victoria, Australia, 10.1071/sr08107
  55. Dunbabin VM, Airey M, Diggle AJ, Renton M, Rengel Z, Armstrong R, Chen Y, Siddique KHM (2011) Simulating the interaction between plant root, soil water and nutrient flows, and barriers and objects in soil using ROOTMAP. In: Anderssen RS, Chan F, Marinova D (eds) 19th International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand, Dec 2011, pp 975–981. http://mssanz.org.au/modsim2011
  56. Dupuy Lionel, Gregory Peter J., Bengough A. Glyn, Root growth models: towards a new generation of continuous approaches, 10.1093/jxb/erp389
  57. Eissenstat D.M., Yanai R.D., The Ecology of Root Lifespan, Advances in Ecological Research Volume 27 (1997) ISBN:9780120139279 p.1-60, 10.1016/s0065-2504(08)60005-7
  58. Feddermann Nadja, Finlay Roger, Boller Thomas, Elfstrand Malin, Functional diversity in arbuscular mycorrhiza – the role of gene expression, phosphorous nutrition and symbiotic efficiency, 10.1016/j.funeco.2009.07.003
  59. Fitter AH (1991) The ecological significance of root system architecture: an economic approach. In: Plant root growth – an ecological perspective. Blackwell Scientific Publications, Oxford, pp 229–243
  60. Fitter Alastair, Characteristics and Functions of Root Systems, Plant Roots (2002) ISBN:9780824706319 p.15-32, 10.1201/9780203909423.ch2
  61. FITTER A. H., STICKLAND T. R., HARVEY M. L., WILSON G. W., Architectural analysis of plant root systems 1. Architectural correlates of exploitation efficiency, 10.1111/j.1469-8137.1991.tb00018.x
  62. Flavel R. J., Guppy C. N., Tighe M., Watt M., McNeill A., Young I. M., Non-destructive quantification of cereal roots in soil using high-resolution X-ray tomography, 10.1093/jxb/err421
  63. Forde B. G., Is it good noise? The role of developmental instability in the shaping of a root system, 10.1093/jxb/erp265
  64. Singh Gahoonia Tara, Nielsen Niels Erik, Root traits as tools for creating phosphorus efficient crop varieties, 10.1023/b:plso.0000030168.53340.bc
  65. Garré S., Pagès L., Laloy E., Javaux M., Vanderborght* J., Vereecken H., Parameterizing a Dynamic Architectural Model of the Root System of Spring Barley from Minirhizotron Data, 10.2136/vzj2011.0179
  66. Ge ZY, Rubio G, Lynch JP (2000) The importance of root gravitropism for inter-root competition and phosphorus acquisition efficiency: results from a geometric simulation model. Plant Soil 218:159–171
  67. Gilroy Simon, Jones David L, Through form to function: root hair development and nutrient uptake, 10.1016/s1360-1385(99)01551-4
  68. Godin Christophe, Sinoquet Hervé, Functional-structural plant modelling : Commentary, 10.1111/j.1469-8137.2005.01445.x
  69. Gregory Peter J., Bengough A. Glyn, Grinev Dmitri, Schmidt Sonja, Thomas W. (Bill) T. B., Wojciechowski Tobias, Young Iain M., Root phenomics of crops: opportunities and challenges, 10.1071/fp09150
  70. Grime JP, Campbell BD, Mackey JML, Crick JC (1991) Root plasticity, nitrogen capture and competitive ability. In: Atkinson D (ed) Plant root growth – an ecological perspective. Blackwell Scientific Publications, Oxford, pp 381–397
  71. Hammer G.L., Woodruff D.R., Robinson J.B., Effects of climatic variability and possible climatic change on reliability of wheat cropping—A modelling approach, 10.1016/0168-1923(87)90074-8
  72. Han Liqi, Gresshoff Peter M., Hanan Jim, A functional–structural modelling approach to autoregulation of nodulation, 10.1093/aob/mcq182
  73. Hinsinger Philippe, Brauman Alain, Devau Nicolas, Gérard Frédéric, Jourdan Christophe, Laclau Jean-Paul, Le Cadre Edith, Jaillard Benoît, Plassard Claude, Acquisition of phosphorus and other poorly mobile nutrients by roots. Where do plant nutrition models fail?, 10.1007/s11104-011-0903-y
  74. Ho Melissa D., Rosas Juan Carlos, Brown Kathleen M., Lynch Jonathan P., Root architectural tradeoffs for water and phosphorus acquisition, 10.1071/fp05043
  75. Hutchinson JMC (2000) Three into two doesn’t go: two-dimensional models of bird eggs, snail shells and plant roots. Biol J Linn Soc 70:161–187
  76. Jahnke Siegfried, Menzel Marion I., van Dusschoten Dagmar, Roeb Gerhard W., Bühler Jonas, Minwuyelet Senay, Blümler Peter, Temperton Vicky M., Hombach Thomas, Streun Matthias, Beer Simone, Khodaverdi Maryam, Ziemons Karl, Coenen Heinz H., Schurr Ulrich, Combined MRI-PET dissects dynamic changes in plant structures and functions, 10.1111/j.1365-313x.2009.03888.x
  77. Janott Michael, Gayler Sebastian, Gessler Arthur, Javaux Mathieu, Klier Christine, Priesack Eckart, A one-dimensional model of water flow in soil-plant systems based on plant architecture, 10.1007/s11104-010-0639-0
  78. Jansa Jan, Mozafar Ahmad, Frossard Emmanuel, Phosphorus Acquisition Strategies within Arbuscular Mycorrhizal Fungal Community of a Single Field Site, 10.1007/s11104-005-4274-0
  79. Javaux Mathieu, Schröder Tom, Vanderborght Jan, Vereecken Harry, Use of a Three-Dimensional Detailed Modeling Approach for Predicting Root Water Uptake, 10.2136/vzj2007.0115
  80. Jones D. L., Nguyen C., Finlay R. D., Carbon flow in the rhizosphere: carbon trading at the soil–root interface, 10.1007/s11104-009-9925-0
  81. Kalliokoski Tuomo, Sievänen Risto, Nygren Pekka, Tree roots as self-similar branching structures: axis differentiation and segment tapering in coarse roots of three boreal forest tree species, 10.1007/s00468-009-0393-1
  82. Kurth Winfried, Lanwert Dirk, Grammar-Based Models and Fractals, Modelling Complex Ecological Dynamics (2011) ISBN:9783642050282 p.147-161, 10.1007/978-3-642-05029-9_11
  83. Kutschera L (1960) Wurzelatlas mitteleuropäischer Ackerunkräuter und Kulturpflanzen. DLG Verlag, Frankfurt am main
  84. LAMBERS H., Root Structure and Functioning for Efficient Acquisition of Phosphorus: Matching Morphological and Physiological Traits, 10.1093/aob/mcl114
  85. LAMBERS H, RAVEN J, SHAVER G, SMITH S, Plant nutrient-acquisition strategies change with soil age, 10.1016/j.tree.2007.10.008
  86. Lambers H., Finnegan P. M., Laliberte E., Pearse S. J., Ryan M. H., Shane M. W., Veneklaas E. J., Phosphorus Nutrition of Proteaceae in Severely Phosphorus-Impoverished Soils: Are There Lessons To Be Learned for Future Crops?, 10.1104/pp.111.174318
  87. Roux Yannick Le, Pagès Loïc, Développement et polymorphisme racinaires chez de jeunes semis d'hévéa (Hevea brasiliensis), 10.1139/b94-117
  88. Leitner D, Schnepf A (2012) Image analysis of 2-dimensional root system architecture. ALGORITMY 2012, 19th Conference on Scientific Computing, Vysoké Tatry – Podbanské, Slovakia, September 9 –14, 2012. http://www.iam.fmph.uniba.sk/algoritmy2012/
  89. Leitner Daniel, Klepsch Sabine, Knieß Astrid, Schnepf Andrea, The algorithmic beauty of plant roots – an L-System model for dynamic root growth simulation, 10.1080/13873954.2010.491360
  90. Leitner Daniel, Klepsch Sabine, Bodner Gernot, Schnepf Andrea, A dynamic root system growth model based on L-Systems : Tropisms and coupling to nutrient uptake from soil, 10.1007/s11104-010-0284-7
  91. Leitner D, Schnepf A, Klepsch S, Roose T (2010c) Water uptake by a maize root system – an explicit numerical 3-dimensional simulation. In: Geophysical Research Abstracts, Vol. 12, EGU2010-8473, 2010, EGU General Assembly 2010, 2–7 March, Vienna, Austria
  92. Lendenmann Mark, Thonar Cécile, Barnard Romain L., Salmon Yann, Werner Roland A., Frossard Emmanuel, Jansa Jan, Symbiont identity matters: carbon and phosphorus fluxes between Medicago truncatula and different arbuscular mycorrhizal fungi, 10.1007/s00572-011-0371-5
  93. Liao Hong, Rubio Gerardo, Yan Xiaolong, Cao Aiqin, Brown Kathleen M., Lynch Jonathan P., 10.1023/a:1010381919003
  94. Liao Mingtan, Palta Jairo A., Fillery Ian R. P., Root characteristics of vigorous wheat improve early nitrogen uptake, 10.1071/ar05439
  95. Lungley D. R., The growth of root systems ? A numerical computer simulation model, 10.1007/bf00011223
  96. Lynch J.P., Root Architecture and Nutrient Acquisition, Ecological Studies ISBN:3540241868 p.147-183, 10.1007/3-540-27675-0_7
  97. Lynch Jonathan P., TURNER REVIEW No. 14. Roots of the Second Green Revolution, 10.1071/bt06118
  98. Lynch J. P., Root Phenes for Enhanced Soil Exploration and Phosphorus Acquisition: Tools for Future Crops, 10.1104/pp.111.175414
  99. Lynch JP, Beebe SE (1995) Adaptation of beans (Phaseolus vulgaris L.) to low phosphorus availability. Hortscience 30:1165–1171
  100. Lynch Jonathan P., Brown Kathleen M., 10.1023/a:1013324727040
  101. Lynch Jonathan P., Brown Kathleen M., Root strategies for phosphorus acquisition, Plant Ecophysiology (2008) ISBN:9781402084348 p.83-116, 10.1007/978-1-4020-8435-5_5
  102. Lynch J. P., Brown K. M., New roots for agriculture: exploiting the root phenome, 10.1098/rstb.2011.0243
  103. Lynch Jonathan P., Ho Melissa D., phosphorus Low, Rhizoeconomics: Carbon costs of phosphorus acquisition, 10.1007/s11104-004-1096-4
  104. Lynch Jonathan, van Beem Johannes J., Growth and Architecture of Seedling Roots of Common Bean Genotypes, 10.2135/cropsci1993.0011183x003300060028x
  105. Lynch Jonathan P., Nielsen Kai L., Davis Robert D., Jablokow Andrei G., 10.1023/a:1004276724310
  106. Ma Zhong, Walk Thomas C., Marcus Andrew, Lynch Jonathan P., 10.1023/a:1012728819326
  107. Marschner Petra, Crowley David, Rengel Zed, Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis – model and research methods, 10.1016/j.soilbio.2011.01.005
  108. Metselaar Klaas, de Jong van Lier Quirijn, The Shape of the Transpiration Reduction Function under Plant Water Stress, 10.2136/vzj2006.0086
  109. Meyer Katrin M., Mooij Wolf M., Vos Matthijs, Hol W.H. Gera, van der Putten Wim H., The power of simulating experiments, 10.1016/j.ecolmodel.2009.06.001
  110. Miguel MA, Postma JA, Lynch JP (2012) Functional role and synergystic effect of root traits for phosphorus acquisition efficiency and their genetic basis in common bean (Phaseolus vulgaris L.). PhD Thesis, The Pennsylvania State University, USA
  111. Miller Carter R. , Ochoa Ivan , Nielsen Kai L. , Beck Douglas , Lynch Jonathan P. , Genetic variation for adventitious rooting in response to low phosphorus availability: potential utility for phosphorus�acquisition from stratified soils, 10.1071/fp03078
  112. Morris Max D., Factorial Sampling Plans for Preliminary Computational Experiments, 10.1080/00401706.1991.10484804
  113. Mulia Rachmat, Dupraz Christian, van Noordwijk Meine, Reconciling root plasticity and architectural ground rules in tree root growth models with voxel automata, 10.1007/s11104-010-0502-3
  114. Nielsen Kai L., Lynch Jonathan P., Jablokow Andrei G., Curtis Peter S., Carbon cost of root systems: an architectural approach, 10.1007/bf00009972
  115. Nielsen Kai L., Miller Carter R., Beck Douglas, Lynch Jonathan P., 10.1023/a:1004499224717
  116. Nye PH, Tinker PB (1977) Solute movements in the root-soil system. Blackwell, Oxford
  117. Oswald Sascha E., Menon Manoj, Carminati Andrea, Vontobel Peter, Lehmann Eberhard, Schulin Rainer, Quantitative Imaging of Infiltration, Root Growth, and Root Water Uptake via Neutron Radiography, 10.2136/vzj2007.0156
  118. Ozdemir G, Akpinar C, Sabir A, Bilir H, Tangolar S, Ortas I (2010) Effect of inoculation with mycorrhizal fungi on growth and nutrient uptake of grapevine genotypes (vitis spp.). Eur J Hortic Sci 75:103–110
  119. Page E. R., Gerwitz A., Mathematical models, based on diffusion equations, to describe root systems of isolated plants, row crops, and swards, 10.1007/bf00017252
  120. Pagès Loïc, Root system architecture: from its representation to the study of its elaboration, 10.1051/agro:19990309
  121. Pag�s Lo�c, How to include organ interactions in models of the root system architecture? The concept of endogenous environment, 10.1051/forest:2000140
  122. PAGÈS LOÏC, Links between root developmental traits and foraging performance : Root developmental traits and foraging performance, 10.1111/j.1365-3040.2011.02371.x
  123. PAGES Loïc, ARIES Franck, SARAH : modèle de simulation de la croissance, du développement et de l'architecture des systèmes racinaires, 10.1051/agro:19881008
  124. Pagès Loíc, Glyn Bengough Anthony, 10.1023/a:1004288430467
  125. Pagès L., Jordan M. O., Picard D., A simulation model of the three-dimensional architecture of the maize root system, 10.1007/bf02370279
  126. Pagès Loïc, Vercambre Gilles, Drouet Jean-Louis, Lecompte François, Collet Catherine, Le Bot Jacques, Root Typ: a generic model to depict and analyse the root system architecture, 10.1023/b:plso.0000016540.47134.03
  127. Pierret Alain, Doussan Claude, Capowiez Yvan, Bastardie François, Pagès Loïc, Root Functional Architecture: A Framework for Modeling the Interplay between Roots and Soil, 10.2136/vzj2006.0067
  128. Pohlmeier A, Vanderborght J, Haber–Pohlmeier S, Wienke S, Vereecken H, Javaux M (2010) Root water uptake and tracer transport in a lupin root system: integration of magnetic resonance images and the numerical model RSWMS. In: EGU General Assembly Conference Abstracts, pp 7217
  129. Poorter H, Bühler J, van Dusschoten D, Climent J, Postma JA (2012a) Pot size matters: a meta–analysis of the effects of rooting volume on plant growth. Funct Plant Biol. doi: 10.1071/FP12049
  130. Poorter Hendrik, Niklas Karl J., Reich Peter B., Oleksyn Jacek, Poot Pieter, Mommer Liesje, Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control : Tansley review, 10.1111/j.1469-8137.2011.03952.x
  131. Postma Johannes A., Lynch Jonathan P., Theoretical evidence for the functional benefit of root cortical aerenchyma in soils with low phosphorus availability, 10.1093/aob/mcq199
  132. Postma J. A., Lynch J. P., Root Cortical Aerenchyma Enhances the Growth of Maize on Soils with Suboptimal Availability of Nitrogen, Phosphorus, and Potassium, 10.1104/pp.111.175489
  133. Postma Johannes A., Lynch Jonathan P., Complementarity in root architecture for nutrient uptake in ancient maize/bean and maize/bean/squash polycultures, 10.1093/aob/mcs082
  134. Postma JA, Jaramillo RE, Lynch JP (2008) Towards modeling the function of root traits for enhancing water acquisition by crops. In: Ahuja LR, Reddy VR, Saseendran SA, Yu Q (eds) Advances in agricultural systems modelling -response of crops to limited water: understanding and modelling water stress effects on plant growth processes. ASA-CSSA-SSSA, Madison, pp 251–276
  135. Pradal Christophe, Dufour-Kowalski Samuel, Boudon Frédéric, Fournier Christian, Godin Christophe, OpenAlea: a visual programming and component-based software platform for plant modelling, 10.1071/fp08084
  136. Pradal C., Boudon F., Nouguier C., Chopard J., Godin C., PlantGL: A Python-based geometric library for 3D plant modelling at different scales, 10.1016/j.gmod.2008.10.001
  137. Prusinkiewicz Przemyslaw, Modeling plant growth and development, 10.1016/j.pbi.2003.11.007
  138. Prusinkiewicz Przemyslaw, Lindenmayer Aristid, The Algorithmic Beauty of Plants, ISBN:9780387946764, 10.1007/978-1-4613-8476-2
  139. Ptashnyk Mariya, Derivation of a macroscopic model for nutrient uptake by hairy-roots, 10.1016/j.nonrwa.2008.10.063
  140. Richardson Alan E., Barea José-Miguel, McNeill Ann M., Prigent-Combaret Claire, Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms, 10.1007/s11104-009-9895-2
  141. Robinson David, Optimal relations between root length and nutrient inflow rate in plant root systems, 10.1016/s0022-5193(88)80250-9
  142. ROBINSON DAVID, The responses of plants to non-uniform supplies of nutrients, 10.1111/j.1469-8137.1994.tb02969.x
  143. Robinson David, Variation, co-ordination and compensation in root systems in relation to soil variability, 10.1007/bf00011657
  144. Robinson D., Integrated Root Responses to Variations in Nutrient Supply, Ecological Studies ISBN:3540241868 p.43-61, 10.1007/3-540-27675-0_3
  145. Roose T., Fowler A.C., Darrah P.R., A mathematical model of plant nutrient uptake, 10.1007/s002850000075
  146. Roose T., Fowler A.C., A mathematical model for water and nutrient uptake by plant root systems, 10.1016/j.jtbi.2003.12.013
  147. Roose T., Schnepf A., Mathematical models of plant-soil interaction, 10.1098/rsta.2008.0198
  148. Roose T., Kirk G. J. D., The solution of convection–diffusion equations for solute transport to plant roots, 10.1007/s11104-008-9777-z
  149. Rose C. W., Chichester F. W., Williams J. R., Ritchie J. T., A Contribution to Simplified Models of Field Solute Transport1, 10.2134/jeq1982.00472425001100010032x
  150. Rose C. W., Chichester F. W., Williams J. R., Ritchie J. T., Application of an Approximate Analytic Method of Computing Solute Profiles with Dispersion in Soils1, 10.2134/jeq1982.00472425001100010033x
  151. Rose Terry J., Hardiputra Bingah, Rengel Zed, Wheat, canola and grain legume access to soil phosphorus fractions differs in soils with contrasting phosphorus dynamics, 10.1007/s11104-009-9990-4
  152. Rubio G, Root Gravitropism and Below-ground Competition among Neighbouring Plants: A Modelling Approach, 10.1006/anbo.2001.1530
  153. Ryan PR, Delhaize E, Jones DL, FUNCTION ANDMECHANISM OFORGANICANIONEXUDATION FROMPLANTROOTS, 10.1146/annurev.arplant.52.1.527
  154. Saltelli A, Scott EM, Chan K (2000) Sensitivity analysis. John Wiley & Sons, Ltd, Chichester
  155. Schneider C. L., Attinger S., Delfs J.-O., Hildebrandt A., Implementing small scale processes at the soil-plant interface – the role of root architectures for calculating root water uptake profiles, 10.5194/hess-14-279-2010
  156. Schnepf A, Roose T, Schweiger P, Growth model for arbuscular mycorrhizal fungi, 10.1098/rsif.2007.1250
  157. Schnepf Andrea, Leitner Daniel, Klepsch Sabine, Pellerin Sylvain, Mollier Alain, Modelling Phosphorus Dynamics in the Soil–Plant System, Soil Biology (2011) ISBN:9783642152702 p.113-133, 10.1007/978-3-642-15271-9_5
  158. Schnepf A., Leitner D., Klepsch S., Modeling Phosphorus Uptake by a Growing and Exuding Root System, 10.2136/vzj2012.0001
  159. Schröder Tom, Javaux Mathieu, Vanderborght Jan, Körfgen Bernd, Vereecken Harry, Effect of Local Soil Hydraulic Conductivity Drop Using a Three-Dimensional Root Water Uptake Model, 10.2136/vzj2007.0114
  160. Schröder Tom, Javaux Mathieu, Vanderborght Jan, Körfgen Bernd, Vereecken Harry, Implementation of a Microscopic Soil–Root Hydraulic Conductivity Drop Function in a Three-Dimensional Soil–Root Architecture Water Transfer Model, 10.2136/vzj2008.0116
  161. Schröder T., Tang L., Javaux M., Vanderborght J., Körfgen B., Vereecken H., A grid refinement approach for a three-dimensional soil-root water transfer model : GRID REFINEMENT FOR A 3-D SOIL-ROOT WATER TRANSFER, 10.1029/2009wr007873
  162. Schröder N, Javaux M, Vanderborght J, Steffen B, Vereecken H (2012) Effect of root water and solute uptake on apparent soil dispersivity: a simulation study. Vadose Zone J. doi: 10.2136/vzj2012.0009
  163. Schulz H, Postma JA, van Dusschoten D, Scharr H, Behnke S (2012) 3D reconstruction of plant roots from MRI images. Proceedings of the International Conference on Computer Vision Theory and Applications (VISAPP), Rome, February 2012
  164. Shibusawa Sakae, Modelling the branching growth fractal pattern of the maize root system, 10.1007/bf00008079
  165. Shu Liangzuo, Shen Jianbo, Rengel Zed, Tang Caixian, Zhang Fusuo, Cawthray Gregory R., Formation of cluster roots and citrate exudation by Lupinus albus in response to localized application of different phosphorus sources, 10.1016/j.plantsci.2007.02.006
  166. Simunek J, Huang K, Van Genuchten M Th (1995) The SWMS_3D code for simulating water flow and solute transport in three-dimensional variably-saturated media. Version 1.0. Research Report n°139. Riverside, California. U. S. Salinity Laboratory. Agricultural Research Service. U.S. Department of Agriculture
  167. Smith S., De Smet I., Root system architecture: insights from Arabidopsis and cereal crops, 10.1098/rstb.2011.0234
  168. Somma F, Clausnitzer V, Hopmans JW (1997) An algorithm for three-dimensional, simultaneous modeling of root growth, transient soil water flow, and solute transport and uptake. Version 2.1. Paper No. 100034. Dept of Land, Air, and Water Resources, University of California
  169. Somma F., Hopmans J.W., Clausnitzer V., 10.1023/a:1004378602378
  170. Spek Louise Y., 10.1023/a:1004236626479
  171. Steele K.A., Virk D.S., Kumar R., Prasad S.C., Witcombe J.R., Field evaluation of upland rice lines selected for QTLs controlling root traits, 10.1016/j.fcr.2006.11.002
  172. Stingaciu L, Schulz H, Pohlmeier A, Behnke S, Zilken H, Javaux M, Vereecken H (2013) In situ root system architecture extraction from magnetic resonance imaging for application to water uptake modeling. Vadose Zone J. doi: 10.2136/vzj2012.0019
  173. Subbaiah R., Rao K. A., Root Growth Simulation Model under Specified Environment, 10.1061/(asce)0733-9437(1993)119:5(898)
  174. Tajini Fatma, Suriyakup Porntip, Vailhe Helene, Jansa Jan, Drevon Jean-Jacques, Assess suitability of hydroaeroponic culture to establish tripartite symbiosis between different AMF species, beans, and rhizobia, 10.1186/1471-2229-9-73
  175. Tardieu F., Why work and discuss the basic principles of plant modelling 50 years after the first plant models?, 10.1093/jxb/erq135
  176. Thaler Philippe, Pagès Loïc, 10.1023/a:1004380021699
  177. Thonar Cécile, Schnepf Andrea, Frossard Emmanuel, Roose Tiina, Jansa Jan, Traits related to differences in function among three arbuscular mycorrhizal fungi, 10.1007/s11104-010-0571-3
  178. Thorup-Kristensen Kristian, 10.1023/a:1010306425468
  179. TSEGAYE TEZERA, MULLINS C. E., DIGGLE A. J., Modelling pea (Pisum sativum) root growth in drying soil. A comparison between observations and model predictions, 10.1111/j.1469-8137.1995.tb05719.x
  180. van Lier Quirijn de Jong, Metselaar Klaas, van Dam Jos C., Root Water Extraction and Limiting Soil Hydraulic Conditions Estimated by Numerical Simulation, 10.2136/vzj2006.0056
  181. Vance Carroll P., Uhde-Stone Claudia, Allan Deborah L., Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource, 10.1046/j.1469-8137.2003.00695.x
  182. Vercambre G., Pagès L., Doussan C., Habib R., 10.1023/a:1022961513239
  183. Vos J., Evers J. B., Buck-Sorlin G. H., Andrieu B., Chelle M., de Visser P. H. B., Functional–structural plant modelling: a new versatile tool in crop science, 10.1093/jxb/erp345
  184. Wagner Bettina, Gärtner Holger, Ingensand Hilmar, Santini Silvia, Incorporating 2D tree-ring data in 3D laser scans of coarse-root systems, 10.1007/s11104-010-0370-x
  185. Wagner Bettina, Santini Silvia, Ingensand Hilmar, Gärtner Holger, A tool to model 3D coarse-root development with annual resolution, 10.1007/s11104-011-0797-8
  186. WALK T. C., Modelling Applicability of Fractal Analysis to Efficiency of Soil Exploration by Roots, 10.1093/aob/mch116
  187. Walk Thomas C., Jaramillo Raul, Lynch Jonathan P., Architectural Tradeoffs between Adventitious and Basal Roots for Phosphorus Acquisition, 10.1007/s11104-005-0389-6
  188. Wallstrom T.C., Christie M.A., Durlofsky L.J., Sharp D.H., 10.1023/a:1015075210265
  189. Wiesler F., Horst W. J., Root growth and nitrate utilization of maize cultivars under field conditions, 10.1007/bf00007976
  190. Wu L, Bingham IJ (2009) Using modelling as a tool to explore resource use efficiency by crops. Asp Appl Biol 93:257–261
  191. Wu L, Shepherd A (2011) Special features of the SPACSYS modeling package and procedures for parameterization and validation. In: Ahuja LR, Ma L (eds) Methods of introducing system models into agricultural research. ASA, CSSA & SSSA, Madison, pp 117–154
  192. Wu L, Baddeley JA, Watson CA (2005) Designer root systems – the value of modelling to determine optimum root systems for different end uses. Asp Appl Biol 71:11–16
  193. Wu L., McGechan M.B., McRoberts N., Baddeley J.A., Watson C.A., SPACSYS: Integration of a 3D root architecture component to carbon, nitrogen and water cycling—Model description, 10.1016/j.ecolmodel.2006.08.010
  194. Wu L, Bingham IJ, Baddeley JA, Watson CA (2008) The importance of 3D root architecture when simulating plant N uptake. In: Ma L, Ahuja LR, Bruulsema TW (eds) Quantifying and understanding plant nitrogen uptake systems modelling (9). CRC Press, Boca Raton, pp 197–218
  195. Xu Lifeng, Henke Michael, Zhu Jun, Kurth Winfried, Buck-Sorlin Gerhard, A functional–structural model of rice linking quantitative genetic information with morphological development and physiological processes, 10.1093/aob/mcq264
  196. Yang H. S., Janssen B. H., A mono-component model of carbon mineralization with a dynamic rate constant, 10.1046/j.1365-2389.2000.00319.x
  197. Zhu Jinming, Lynch Jonathan P., The contribution of lateral rooting to phosphorus acquisition efficiency in maize (Zea mays) seedlings, 10.1071/fp04046
  198. Zhu Jinming, Kaeppler Shawn M., Lynch Jonathan P., Topsoil foraging and phosphorus acquisition efficiency in maize (Zea mays), 10.1071/fp05005
  199. Zhu J, Brown KM, Lynch JP (2010a) Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.). Plant Cell Environ 33:740–749
  200. Zhu Jinming, Zhang Chaochun, Lynch Jonathan P., The utility of phenotypic plasticity of root hair length for phosphorus acquisition, 10.1071/fp09197
  201. Zygalakis K. C., Roose T., A mathematical model for investigating the effect of cluster roots on plant nutrient uptake, 10.1140/epjst/e2012-01555-9
  202. Zygalakis K. C., Kirk G. J. D., Jones D. L., Wissuwa M., Roose T., A dual porosity model of nutrient uptake by root hairs, 10.1111/j.1469-8137.2011.03840.x
Bibliographic reference Dunbabin, Vanessa ; Postma, Johannes ; Schnepf, Andrea ; Pagès, Loïc ; Javaux, Mathieu ; et. al. Modelling root–soil interactions using three–dimensional models of root growth, architecture and function. In: Plant and Soil : international journal on plant-soil relationships, Vol. 372, p. 93-124 (4 June 2013)
Permanent URL http://hdl.handle.net/2078.1/133532