Dunbabin, Vanessa
[Tasmanian Institute of Agriculture, University of Tasmania, Australia]
Postma, Johannes
[IBG-2 Plant Sciences, Forschungszentrum Jülich, Germany]
Schnepf, Andrea
[University of Natural Resources and Life Sciences, Vienna, Austria]
Pagès, Loïc
[INRA, Avignon, France]
Javaux, Mathieu
[UCL]
Wu, Lianhai
[Rothamsted Research, Devon, United Kingdom]
Leitner, Daniel
[Computational Science Center, Vienna, Austria]
Chen, Ying
[The University of Western Australia, Crawley, Australia]
Rengel, Zed
[The University of Western Australia, Crawley, Australia]
Diggle, Art
[The University of Western Australia, Bentley, Australia]
Background three–dimensional root architectural models emerged in the late 1980s, providing an opportunity to conceptualise and investigate that all important part of plants that is typically hidden and difficult to measure and study. These models have progressed from representing pre–defined root architectural arrangements, to simulating root growth in response to heterogeneous soil environments. This was done through incorporating soil properties and more complete descriptions of plant function, moving into the realm of functional-structural plant modelling. Modelling studies are often designed to
E., Agro-Process Intensification through Synthetic Rhizosphere Media for Nitrogen Fixation and Yield Enhancement in Plants, 10.3844/ajabssp.2012.150.172
Ao Junhua, Fu Jiabing, Tian Jiang, Yan Xiaolong, Liao Hong, Genetic variability for root morph-architecture traits and root growth dynamics as related to phosphorus efficiency in soybean, 10.1071/fp09215
Baldwin J. P., Nye P. H., Tinker P. B., Uptake of solutes by multiple root systems from soil : III—A model for calculating the solute uptake by a randomly dispersed root system developing in a finite volume of soil, 10.1007/bf00010701
Bates Terence R., Lynch Jonathan P., The Efficiency of Arabidopsis thaliana (Brassicaceae) Root Hairs in Phosphorus Acquisition, 10.2307/2656995
Bear Jacob, Cheng Alexander H.-D., Modeling Groundwater Flow and Contaminant Transport, ISBN:9781402066818, 10.1007/978-1-4020-6682-5
Bechtold M, Vanderborght J, Ippisch O, Vereecken H (2011) Efficient random walk particle tracking algorithm for advective-dispersive transport in media with discontinuous dispersion coefficients and water contents. Water Res 47:W10526
Bengough A. Glyn, Root elongation is restricted by axial but not by radial pressures: so what happens in field soil?, 10.1007/s11104-012-1428-8
Bengough A. G., Mackenzie C. J., Diggle A. J., Relations between root length densities and root intersections with horizontal and vertical planes using root growth modelling in 3-dimensions, 10.1007/bf00010353
Bengough A. Glyn, McKenzie B. M., Hallett P. D., Valentine T. A., Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits, 10.1093/jxb/erq350
Bidel L, MassFlowDyn I: A Carbon Transport and Partitioning Model for Root System Architecture, 10.1006/anbo.2000.1149
Bingham Ian J., Wu Lianhai, Simulation of wheat growth using the 3D root architecture model SPACSYS: Validation and sensitivity analysis, 10.1016/j.eja.2011.01.003
Bingham IJ, Rees RM, Bengough AG (2009) Influence of soil compaction on the dynamics of root growth and mortality in spring barley. International symposium “root research and applications” RootRAP, 2–4 Sept 2009. Boku, Vienna, pp 148–4
Bohn M., Novais J., Fonseca R., Tuberosa R., Grift T. E., Genetic evaluation of root complexity in maize, 10.1556/aagr.54.2006.3.3
Brady D.J., Wenzel C.L., Fillery I.R.P., Gregory P.J., Root growth and nitrate uptake by wheat (Triticum aestivumL.) following wetting of dry surface soil, 10.1093/jxb/46.5.557
Brück HH, Becker HC, Sattelmacher B (1992) Phosphate efficiencies of two maize inbred lines. In: Kutschera L, Hüble E, Lichtenegger E, Persson H, Sobotik M (eds) Root ecology and its practical applications. 3rd ISRR Symposium, Vienna, Austria, pp 193–196
Burton Amy L., Williams Michael, Lynch Jonathan P., Brown Kathleen M., RootScan: Software for high-throughput analysis of root anatomical traits, 10.1007/s11104-012-1138-2
Burton AL, Brown KM, Lynch JP (2013) Phenotypic diversity of root anatomical and architectural traits in Zea species. Crop Sci. doi: 10.2135/cropsci2012.07.0440
Campbell B. D., Grime J. P., Mackey J. M. L., A trade-off between scale and precision in resource foraging, 10.1007/bf00320417
Chandra K, Kumar N, Chand G (2010) Studies on mycorrhizal inoculation on dry matter yield and root colonization of some medicinal plants grown in stress and forest soils. J Environ Biol 31:975–979
Chen W, Dunbabin V, Bell R, Brennan R, Bowden B (2008) Simulating and understanding root growth using ROOTMAP to guide phosphorus fertiliser placement in wide row lupin cropping systems. In: Lupins for health and wealth - Proceedings of the 12th International Lupin Conference, 14–18 Sept, 2008, Fremantle, WA. International Lupin Association, Canterbury, pp 368–372
Chen Ying Long, Dunbabin Vanessa M., Postma Johannes A., Diggle Art J., Palta Jairo A., Lynch Jonathan P., Siddique Kadambot H. M., Rengel Zed, Phenotypic variability and modelling of root structure of wild Lupinus angustifolius genotypes, 10.1007/s11104-011-0939-z
Clark R. T., MacCurdy R. B., Jung J. K., Shaff J. E., McCouch S. R., Aneshansley D. J., Kochian L. V., Three-Dimensional Root Phenotyping with a Novel Imaging and Software Platform, 10.1104/pp.110.169102
Clausnitzer V, Hopmans JW (1993) An algorithm for three–dimensional simultaneous modelling of root growth and transient water flow. Land, air and water resources paper no. 100022. Department of Land, Air and Water Resources, University of California, Davis, pp 1–108
Clausnitzer V., Hopmans J. W., Simultaneous modeling of transient three-dimensional root growth and soil water flow, 10.1007/bf00010082
Collet Catherine, Löf Magnus, Pagès Loïc, Root System Development of Oak Seedlings Analysed using an Architectural Model. Effects of Competition with Grass, 10.1007/s11104-005-2419-9
Couvreur V., Vanderborght J., Javaux M., A simple three-dimensional macroscopic root water uptake model based on the hydraulic architecture approach, 10.5194/hess-16-2957-2012
de Dorlodot Sophie, Forster Brian, Pagès Loïc, Price Adam, Tuberosa Roberto, Draye Xavier, Root system architecture: opportunities and constraints for genetic improvement of crops, 10.1016/j.tplants.2007.08.012
de Willigen Peter, van Dam Jos C., Javaux Mathieu, Heinen Marius, Root Water Uptake as Simulated by Three Soil Water Flow Models, 10.2136/vzj2012.0018
Deans J. D., Ford E. D., Modelling root structure and stability, 10.1007/bf02182654
Diggle A. J., ROOTMAP—a model in three-dimensional coordinates of the growth and structure of fibrous root systems, 10.1007/bf02376780
Diggle AJ (1988c) ROOTMAP2.1 – a root growth simulation program. Department of Agriculture Western Australia, Western Australia
Diggle AJ (1990) Interaction between mineral nitrogen and growth of wheat roots in a leaching environment. PhD, The University of Western Australia, Perth
Diggle AJ (1996) Developments in architectural models of root systems and the potential for their application to intercropping. In: Ito O, Johansen C, Adu–Gyamfi JJ, Katayama K, Kumar Rao JVDK, Rego TJ (eds) Dynamics of roots and nitrogen in cropping systems of the semi–arid tropics. Japan International Research Center for Agricultural Sciences, Japan, pp 559–571
Dinkelaker Barbara, Hengeler Christine, Marschner H., Distribution and Function of Proteoid Roots and other Root Clusters, 10.1111/j.1438-8677.1995.tb00850.x
Douds David D., Nagahashi Gerald, Reider Carolyn, Hepperly Paul R., Choosing a Mixture Ratio for the On-Farm Production of AM Fungus Inoculum In Mixtures of Compost and Vermiculite, 10.1080/1065657x.2008.10702355
DOUSSAN C, Modelling of the Hydraulic Architecture of Root Systems: An Integrated Approach to Water Absorption—Model Description, 10.1006/anbo.1997.0540
Doussan Claude, Pagès Loïc, Pierret Alain, Soil exploration and resource acquisition by plant roots: an architectural and modelling point of view, 10.1051/agro:2003027
Doussan Claude, Pierret Alain, Garrigues Emmanuelle, Pagès Loïc, Water Uptake by Plant Roots: II – Modelling of Water Transfer in the Soil Root-system with Explicit Account of Flow within the Root System – Comparison with Experiments, 10.1007/s11104-004-7904-z
Draye X, Pagès L (2007) CrossTalk: a simulation platform for the linking of existing soil, plant and atmosphere models. In: Proceeding of international symposium on plant growth modeling and applications. IEEE Computer Society, Los Alamitos, pp 93–100
Draye Xavier, Kim Yangmin, Lobet Guillaume, Javaux Mathieu, Model-assisted integration of physiological and environmental constraints affecting the dynamic and spatial patterns of root water uptake from soils, 10.1093/jxb/erq077
DREW M. C., SAKER L. R., Nutrient Supply and the Growth of the Seminal Root System in Barley : II. LOCALIZED, COMPENSATORY INCREASES IN LATERAL ROOT GROWTH AND RATES OP NITRATE UPTAKE WHEN NITRATE SUPPLY IS RESTRICTED TO ONLY PART OF THE ROOT SYSTEM, 10.1093/jxb/26.1.79
DREW M. C., SAKER L. R., ASHLEY T. W., Nutrient Supply and the Growth of the Seminal Root System in Barley : I. THE EFFECT OF NITRATE CONCENTRATION ON THE GROWTH OF AXES AND LATERALS, 10.1093/jxb/24.6.1189
Dunbabin Vanessa, Simulating the role of rooting traits in crop-weed competition, 10.1016/j.fcr.2007.03.014
DUNBABIN V., DIGGLE A., RENGEL Z., Is there an optimal root architecture for nitrate capture in leaching environments?, 10.1046/j.1365-3040.2003.01015.x
Dunbabin V, Rengel Z, Diggle A (2003b) Root architecture and nutrient capture – the complex riddle of what constitutes optimality of root form and function. In: Lynch JM, Schepers JS, Unver I (eds) Innovative soil-plant systems for sustainable agricultural practices. Organisation for Economic Co–operation and Development (OECD), Paris, pp 2–16
Dunbabin V., Rengel Z., Diggle A. J., Simulating form and function of root systems: efficiency of nitrate uptake is dependent on root system architecture and the spatial and temporal variability of nitrate supply, 10.1111/j.0269-8463.2004.00827.x
Dunbabin Vanessa M., McDermott Sean, Bengough A. Glyn, Upscaling from Rhizosphere to Whole Root System: Modelling the Effects of Phospholipid Surfactants on Water and Nutrient Uptake, 10.1007/s11104-005-0866-y
Dunbabin V. M., Armstrong R. D., Officer S. J., Norton R. M., Identifying fertiliser management strategies to maximise nitrogen and phosphorus acquisition by wheat in two contrasting soils from Victoria, Australia, 10.1071/sr08107
Dunbabin VM, Airey M, Diggle AJ, Renton M, Rengel Z, Armstrong R, Chen Y, Siddique KHM (2011) Simulating the interaction between plant root, soil water and nutrient flows, and barriers and objects in soil using ROOTMAP. In: Anderssen RS, Chan F, Marinova D (eds) 19th International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand, Dec 2011, pp 975–981. http://mssanz.org.au/modsim2011
Dupuy Lionel, Gregory Peter J., Bengough A. Glyn, Root growth models: towards a new generation of continuous approaches, 10.1093/jxb/erp389
Eissenstat D.M., Yanai R.D., The Ecology of Root Lifespan, Advances in Ecological Research Volume 27 (1997) ISBN:9780120139279 p.1-60, 10.1016/s0065-2504(08)60005-7
Feddermann Nadja, Finlay Roger, Boller Thomas, Elfstrand Malin, Functional diversity in arbuscular mycorrhiza – the role of gene expression, phosphorous nutrition and symbiotic efficiency, 10.1016/j.funeco.2009.07.003
Fitter AH (1991) The ecological significance of root system architecture: an economic approach. In: Plant root growth – an ecological perspective. Blackwell Scientific Publications, Oxford, pp 229–243
Fitter Alastair, Characteristics and Functions of Root Systems, Plant Roots (2002) ISBN:9780824706319 p.15-32, 10.1201/9780203909423.ch2
FITTER A. H., STICKLAND T. R., HARVEY M. L., WILSON G. W., Architectural analysis of plant root systems 1. Architectural correlates of exploitation efficiency, 10.1111/j.1469-8137.1991.tb00018.x
Flavel R. J., Guppy C. N., Tighe M., Watt M., McNeill A., Young I. M., Non-destructive quantification of cereal roots in soil using high-resolution X-ray tomography, 10.1093/jxb/err421
Forde B. G., Is it good noise? The role of developmental instability in the shaping of a root system, 10.1093/jxb/erp265
Singh Gahoonia Tara, Nielsen Niels Erik, Root traits as tools for creating phosphorus efficient crop varieties, 10.1023/b:plso.0000030168.53340.bc
Garré S., Pagès L., Laloy E., Javaux M., Vanderborght* J., Vereecken H., Parameterizing a Dynamic Architectural Model of the Root System of Spring Barley from Minirhizotron Data, 10.2136/vzj2011.0179
Ge ZY, Rubio G, Lynch JP (2000) The importance of root gravitropism for inter-root competition and phosphorus acquisition efficiency: results from a geometric simulation model. Plant Soil 218:159–171
Gilroy Simon, Jones David L, Through form to function: root hair development and nutrient uptake, 10.1016/s1360-1385(99)01551-4
Gregory Peter J., Bengough A. Glyn, Grinev Dmitri, Schmidt Sonja, Thomas W. (Bill) T. B., Wojciechowski Tobias, Young Iain M., Root phenomics of crops: opportunities and challenges, 10.1071/fp09150
Hammer G.L., Woodruff D.R., Robinson J.B., Effects of climatic variability and possible climatic change on reliability of wheat cropping—A modelling approach, 10.1016/0168-1923(87)90074-8
Han Liqi, Gresshoff Peter M., Hanan Jim, A functional–structural modelling approach to autoregulation of nodulation, 10.1093/aob/mcq182
Hinsinger Philippe, Brauman Alain, Devau Nicolas, Gérard Frédéric, Jourdan Christophe, Laclau Jean-Paul, Le Cadre Edith, Jaillard Benoît, Plassard Claude, Acquisition of phosphorus and other poorly mobile nutrients by roots. Where do plant nutrition models fail?, 10.1007/s11104-011-0903-y
Ho Melissa D., Rosas Juan Carlos, Brown Kathleen M., Lynch Jonathan P., Root architectural tradeoffs for water and phosphorus acquisition, 10.1071/fp05043
Hutchinson JMC (2000) Three into two doesn’t go: two-dimensional models of bird eggs, snail shells and plant roots. Biol J Linn Soc 70:161–187
Jahnke Siegfried, Menzel Marion I., van Dusschoten Dagmar, Roeb Gerhard W., Bühler Jonas, Minwuyelet Senay, Blümler Peter, Temperton Vicky M., Hombach Thomas, Streun Matthias, Beer Simone, Khodaverdi Maryam, Ziemons Karl, Coenen Heinz H., Schurr Ulrich, Combined MRI-PET dissects dynamic changes in plant structures and functions, 10.1111/j.1365-313x.2009.03888.x
Janott Michael, Gayler Sebastian, Gessler Arthur, Javaux Mathieu, Klier Christine, Priesack Eckart, A one-dimensional model of water flow in soil-plant systems based on plant architecture, 10.1007/s11104-010-0639-0
Jansa Jan, Mozafar Ahmad, Frossard Emmanuel, Phosphorus Acquisition Strategies within Arbuscular Mycorrhizal Fungal Community of a Single Field Site, 10.1007/s11104-005-4274-0
Javaux Mathieu, Schröder Tom, Vanderborght Jan, Vereecken Harry, Use of a Three-Dimensional Detailed Modeling Approach for Predicting Root Water Uptake, 10.2136/vzj2007.0115
Jones D. L., Nguyen C., Finlay R. D., Carbon flow in the rhizosphere: carbon trading at the soil–root interface, 10.1007/s11104-009-9925-0
Kalliokoski Tuomo, Sievänen Risto, Nygren Pekka, Tree roots as self-similar branching structures: axis differentiation and segment tapering in coarse roots of three boreal forest tree species, 10.1007/s00468-009-0393-1
Kutschera L (1960) Wurzelatlas mitteleuropäischer Ackerunkräuter und Kulturpflanzen. DLG Verlag, Frankfurt am main
LAMBERS H., Root Structure and Functioning for Efficient Acquisition of Phosphorus: Matching Morphological and Physiological Traits, 10.1093/aob/mcl114
LAMBERS H, RAVEN J, SHAVER G, SMITH S, Plant nutrient-acquisition strategies change with soil age, 10.1016/j.tree.2007.10.008
Lambers H., Finnegan P. M., Laliberte E., Pearse S. J., Ryan M. H., Shane M. W., Veneklaas E. J., Phosphorus Nutrition of Proteaceae in Severely Phosphorus-Impoverished Soils: Are There Lessons To Be Learned for Future Crops?, 10.1104/pp.111.174318
Roux Yannick Le, Pagès Loïc, Développement et polymorphisme racinaires chez de jeunes semis d'hévéa (Hevea brasiliensis), 10.1139/b94-117
Leitner D, Schnepf A (2012) Image analysis of 2-dimensional root system architecture. ALGORITMY 2012, 19th Conference on Scientific Computing, Vysoké Tatry – Podbanské, Slovakia, September 9 –14, 2012. http://www.iam.fmph.uniba.sk/algoritmy2012/
Leitner Daniel, Klepsch Sabine, Knieß Astrid, Schnepf Andrea, The algorithmic beauty of plant roots – an L-System model for dynamic root growth simulation, 10.1080/13873954.2010.491360
Leitner Daniel, Klepsch Sabine, Bodner Gernot, Schnepf Andrea, A dynamic root system growth model based on L-Systems : Tropisms and coupling to nutrient uptake from soil, 10.1007/s11104-010-0284-7
Leitner D, Schnepf A, Klepsch S, Roose T (2010c) Water uptake by a maize root system – an explicit numerical 3-dimensional simulation. In: Geophysical Research Abstracts, Vol. 12, EGU2010-8473, 2010, EGU General Assembly 2010, 2–7 March, Vienna, Austria
Lendenmann Mark, Thonar Cécile, Barnard Romain L., Salmon Yann, Werner Roland A., Frossard Emmanuel, Jansa Jan, Symbiont identity matters: carbon and phosphorus fluxes between Medicago truncatula and different arbuscular mycorrhizal fungi, 10.1007/s00572-011-0371-5
Liao Hong, Rubio Gerardo, Yan Xiaolong, Cao Aiqin, Brown Kathleen M., Lynch Jonathan P., 10.1023/a:1010381919003
Liao Mingtan, Palta Jairo A., Fillery Ian R. P., Root characteristics of vigorous wheat improve early nitrogen uptake, 10.1071/ar05439
Lungley D. R., The growth of root systems ? A numerical computer simulation model, 10.1007/bf00011223
Lynch Jonathan P., Brown Kathleen M., Root strategies for phosphorus acquisition, Plant Ecophysiology (2008) ISBN:9781402084348 p.83-116, 10.1007/978-1-4020-8435-5_5
Lynch J. P., Brown K. M., New roots for agriculture: exploiting the root phenome, 10.1098/rstb.2011.0243
Lynch Jonathan P., Ho Melissa D., phosphorus Low, Rhizoeconomics: Carbon costs of phosphorus acquisition, 10.1007/s11104-004-1096-4
Marschner Petra, Crowley David, Rengel Zed, Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis – model and research methods, 10.1016/j.soilbio.2011.01.005
Metselaar Klaas, de Jong van Lier Quirijn, The Shape of the Transpiration Reduction Function under Plant Water Stress, 10.2136/vzj2006.0086
Meyer Katrin M., Mooij Wolf M., Vos Matthijs, Hol W.H. Gera, van der Putten Wim H., The power of simulating experiments, 10.1016/j.ecolmodel.2009.06.001
Miguel MA, Postma JA, Lynch JP (2012) Functional role and synergystic effect of root traits for phosphorus acquisition efficiency and their genetic basis in common bean (Phaseolus vulgaris L.). PhD Thesis, The Pennsylvania State University, USA
Miller Carter R. , Ochoa Ivan , Nielsen Kai L. , Beck Douglas , Lynch Jonathan P. , Genetic variation for adventitious rooting in response to low phosphorus availability: potential utility for phosphorus�acquisition from stratified soils, 10.1071/fp03078
Mulia Rachmat, Dupraz Christian, van Noordwijk Meine, Reconciling root plasticity and architectural ground rules in tree root growth models with voxel automata, 10.1007/s11104-010-0502-3
Nielsen Kai L., Lynch Jonathan P., Jablokow Andrei G., Curtis Peter S., Carbon cost of root systems: an architectural approach, 10.1007/bf00009972
Nye PH, Tinker PB (1977) Solute movements in the root-soil system. Blackwell, Oxford
Oswald Sascha E., Menon Manoj, Carminati Andrea, Vontobel Peter, Lehmann Eberhard, Schulin Rainer, Quantitative Imaging of Infiltration, Root Growth, and Root Water Uptake via Neutron Radiography, 10.2136/vzj2007.0156
Ozdemir G, Akpinar C, Sabir A, Bilir H, Tangolar S, Ortas I (2010) Effect of inoculation with mycorrhizal fungi on growth and nutrient uptake of grapevine genotypes (vitis spp.). Eur J Hortic Sci 75:103–110
Page E. R., Gerwitz A., Mathematical models, based on diffusion equations, to describe root systems of isolated plants, row crops, and swards, 10.1007/bf00017252
Pagès Loïc, Root system architecture: from its representation to the study of its elaboration, 10.1051/agro:19990309
Pag�s Lo�c, How to include organ interactions in models of the root system architecture? The concept of
endogenous environment, 10.1051/forest:2000140
PAGÈS LOÏC, Links between root developmental traits and foraging performance : Root developmental traits and foraging performance, 10.1111/j.1365-3040.2011.02371.x
PAGES Loïc, ARIES Franck, SARAH : modèle de simulation de la croissance, du développement et de l'architecture des systèmes racinaires, 10.1051/agro:19881008
Pagès L., Jordan M. O., Picard D., A simulation model of the three-dimensional architecture of the maize root system, 10.1007/bf02370279
Pagès Loïc, Vercambre Gilles, Drouet Jean-Louis, Lecompte François, Collet Catherine, Le Bot Jacques, Root Typ: a generic model to depict and analyse the root system architecture, 10.1023/b:plso.0000016540.47134.03
Pierret Alain, Doussan Claude, Capowiez Yvan, Bastardie François, Pagès Loïc, Root Functional Architecture: A Framework for Modeling the Interplay between Roots and Soil, 10.2136/vzj2006.0067
Pohlmeier A, Vanderborght J, Haber–Pohlmeier S, Wienke S, Vereecken H, Javaux M (2010) Root water uptake and tracer transport in a lupin root system: integration of magnetic resonance images and the numerical model RSWMS. In: EGU General Assembly Conference Abstracts, pp 7217
Poorter H, Bühler J, van Dusschoten D, Climent J, Postma JA (2012a) Pot size matters: a meta–analysis of the effects of rooting volume on plant growth. Funct Plant Biol. doi: 10.1071/FP12049
Poorter Hendrik, Niklas Karl J., Reich Peter B., Oleksyn Jacek, Poot Pieter, Mommer Liesje, Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control : Tansley review, 10.1111/j.1469-8137.2011.03952.x
Postma Johannes A., Lynch Jonathan P., Theoretical evidence for the functional benefit of root cortical aerenchyma in soils with low phosphorus availability, 10.1093/aob/mcq199
Postma J. A., Lynch J. P., Root Cortical Aerenchyma Enhances the Growth of Maize on Soils with Suboptimal Availability of Nitrogen, Phosphorus, and Potassium, 10.1104/pp.111.175489
Postma Johannes A., Lynch Jonathan P., Complementarity in root architecture for nutrient uptake in ancient maize/bean and maize/bean/squash polycultures, 10.1093/aob/mcs082
Postma JA, Jaramillo RE, Lynch JP (2008) Towards modeling the function of root traits for enhancing water acquisition by crops. In: Ahuja LR, Reddy VR, Saseendran SA, Yu Q (eds) Advances in agricultural systems modelling -response of crops to limited water: understanding and modelling water stress effects on plant growth processes. ASA-CSSA-SSSA, Madison, pp 251–276
Pradal Christophe, Dufour-Kowalski Samuel, Boudon Frédéric, Fournier Christian, Godin Christophe, OpenAlea: a visual programming and component-based software platform for plant modelling, 10.1071/fp08084
Pradal C., Boudon F., Nouguier C., Chopard J., Godin C., PlantGL: A Python-based geometric library for 3D plant modelling at different scales, 10.1016/j.gmod.2008.10.001
Prusinkiewicz Przemyslaw, Lindenmayer Aristid, The Algorithmic Beauty of Plants, ISBN:9780387946764, 10.1007/978-1-4613-8476-2
Ptashnyk Mariya, Derivation of a macroscopic model for nutrient uptake by hairy-roots, 10.1016/j.nonrwa.2008.10.063
Richardson Alan E., Barea José-Miguel, McNeill Ann M., Prigent-Combaret Claire, Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms, 10.1007/s11104-009-9895-2
Robinson David, Optimal relations between root length and nutrient inflow rate in plant root systems, 10.1016/s0022-5193(88)80250-9
Robinson David, Variation, co-ordination and compensation in root systems in relation to soil variability, 10.1007/bf00011657
Robinson D., Integrated Root Responses to Variations in Nutrient Supply, Ecological Studies ISBN:3540241868 p.43-61, 10.1007/3-540-27675-0_3
Roose T., Fowler A.C., Darrah P.R., A mathematical model of plant nutrient uptake, 10.1007/s002850000075
Roose T., Fowler A.C., A mathematical model for water and nutrient uptake by plant root systems, 10.1016/j.jtbi.2003.12.013
Roose T., Schnepf A., Mathematical models of plant-soil interaction, 10.1098/rsta.2008.0198
Roose T., Kirk G. J. D., The solution of convection–diffusion equations for solute transport to plant roots, 10.1007/s11104-008-9777-z
Rose C. W., Chichester F. W., Williams J. R., Ritchie J. T., A Contribution to Simplified Models of Field Solute Transport1, 10.2134/jeq1982.00472425001100010032x
Rose C. W., Chichester F. W., Williams J. R., Ritchie J. T., Application of an Approximate Analytic Method of Computing Solute Profiles with Dispersion in Soils1, 10.2134/jeq1982.00472425001100010033x
Rose Terry J., Hardiputra Bingah, Rengel Zed, Wheat, canola and grain legume access to soil phosphorus fractions differs in soils with contrasting phosphorus dynamics, 10.1007/s11104-009-9990-4
Rubio G, Root Gravitropism and Below-ground Competition among Neighbouring Plants: A Modelling Approach, 10.1006/anbo.2001.1530
Saltelli A, Scott EM, Chan K (2000) Sensitivity analysis. John Wiley & Sons, Ltd, Chichester
Schneider C. L., Attinger S., Delfs J.-O., Hildebrandt A., Implementing small scale processes at the soil-plant interface – the role of root architectures for calculating root water uptake profiles, 10.5194/hess-14-279-2010
Schnepf A, Roose T, Schweiger P, Growth model for arbuscular mycorrhizal fungi, 10.1098/rsif.2007.1250
Schnepf A., Leitner D., Klepsch S., Modeling Phosphorus Uptake by a Growing and Exuding Root System, 10.2136/vzj2012.0001
Schröder Tom, Javaux Mathieu, Vanderborght Jan, Körfgen Bernd, Vereecken Harry, Effect of Local Soil Hydraulic Conductivity Drop Using a Three-Dimensional Root Water Uptake Model, 10.2136/vzj2007.0114
Schröder Tom, Javaux Mathieu, Vanderborght Jan, Körfgen Bernd, Vereecken Harry, Implementation of a Microscopic Soil–Root Hydraulic Conductivity Drop Function in a Three-Dimensional Soil–Root Architecture Water Transfer Model, 10.2136/vzj2008.0116
Schröder T., Tang L., Javaux M., Vanderborght J., Körfgen B., Vereecken H., A grid refinement approach for a three-dimensional soil-root water transfer model : GRID REFINEMENT FOR A 3-D SOIL-ROOT WATER TRANSFER, 10.1029/2009wr007873
Schröder N, Javaux M, Vanderborght J, Steffen B, Vereecken H (2012) Effect of root water and solute uptake on apparent soil dispersivity: a simulation study. Vadose Zone J. doi: 10.2136/vzj2012.0009
Schulz H, Postma JA, van Dusschoten D, Scharr H, Behnke S (2012) 3D reconstruction of plant roots from MRI images. Proceedings of the International Conference on Computer Vision Theory and Applications (VISAPP), Rome, February 2012
Shibusawa Sakae, Modelling the branching growth fractal pattern of the maize root system, 10.1007/bf00008079
Shu Liangzuo, Shen Jianbo, Rengel Zed, Tang Caixian, Zhang Fusuo, Cawthray Gregory R., Formation of cluster roots and citrate exudation by Lupinus albus in response to localized application of different phosphorus sources, 10.1016/j.plantsci.2007.02.006
Simunek J, Huang K, Van Genuchten M Th (1995) The SWMS_3D code for simulating water flow and solute transport in three-dimensional variably-saturated media. Version 1.0. Research Report n°139. Riverside, California. U. S. Salinity Laboratory. Agricultural Research Service. U.S. Department of Agriculture
Smith S., De Smet I., Root system architecture: insights from Arabidopsis and cereal crops, 10.1098/rstb.2011.0234
Somma F, Clausnitzer V, Hopmans JW (1997) An algorithm for three-dimensional, simultaneous modeling of root growth, transient soil water flow, and solute transport and uptake. Version 2.1. Paper No. 100034. Dept of Land, Air, and Water Resources, University of California
Steele K.A., Virk D.S., Kumar R., Prasad S.C., Witcombe J.R., Field evaluation of upland rice lines selected for QTLs controlling root traits, 10.1016/j.fcr.2006.11.002
Stingaciu L, Schulz H, Pohlmeier A, Behnke S, Zilken H, Javaux M, Vereecken H (2013) In situ root system architecture extraction from magnetic resonance imaging for application to water uptake modeling. Vadose Zone J. doi: 10.2136/vzj2012.0019
Thonar Cécile, Schnepf Andrea, Frossard Emmanuel, Roose Tiina, Jansa Jan, Traits related to differences in function among three arbuscular mycorrhizal fungi, 10.1007/s11104-010-0571-3
TSEGAYE TEZERA, MULLINS C. E., DIGGLE A. J., Modelling pea (Pisum sativum) root growth in drying soil. A comparison between observations and model predictions, 10.1111/j.1469-8137.1995.tb05719.x
van Lier Quirijn de Jong, Metselaar Klaas, van Dam Jos C., Root Water Extraction and Limiting Soil Hydraulic Conditions Estimated by Numerical Simulation, 10.2136/vzj2006.0056
Vance Carroll P., Uhde-Stone Claudia, Allan Deborah L., Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource, 10.1046/j.1469-8137.2003.00695.x
Vos J., Evers J. B., Buck-Sorlin G. H., Andrieu B., Chelle M., de Visser P. H. B., Functional–structural plant modelling: a new versatile tool in crop science, 10.1093/jxb/erp345
Wagner Bettina, Gärtner Holger, Ingensand Hilmar, Santini Silvia, Incorporating 2D tree-ring data in 3D laser scans of coarse-root systems, 10.1007/s11104-010-0370-x
Wagner Bettina, Santini Silvia, Ingensand Hilmar, Gärtner Holger, A tool to model 3D coarse-root development with annual resolution, 10.1007/s11104-011-0797-8
WALK T. C., Modelling Applicability of Fractal Analysis to Efficiency of Soil Exploration by Roots, 10.1093/aob/mch116
Walk Thomas C., Jaramillo Raul, Lynch Jonathan P., Architectural Tradeoffs between Adventitious and Basal Roots for Phosphorus Acquisition, 10.1007/s11104-005-0389-6
Wiesler F., Horst W. J., Root growth and nitrate utilization of maize cultivars under field conditions, 10.1007/bf00007976
Wu L, Bingham IJ (2009) Using modelling as a tool to explore resource use efficiency by crops. Asp Appl Biol 93:257–261
Wu L, Shepherd A (2011) Special features of the SPACSYS modeling package and procedures for parameterization and validation. In: Ahuja LR, Ma L (eds) Methods of introducing system models into agricultural research. ASA, CSSA & SSSA, Madison, pp 117–154
Wu L, Baddeley JA, Watson CA (2005) Designer root systems – the value of modelling to determine optimum root systems for different end uses. Asp Appl Biol 71:11–16
Wu L., McGechan M.B., McRoberts N., Baddeley J.A., Watson C.A., SPACSYS: Integration of a 3D root architecture component to carbon, nitrogen and water cycling—Model description, 10.1016/j.ecolmodel.2006.08.010
Wu L, Bingham IJ, Baddeley JA, Watson CA (2008) The importance of 3D root architecture when simulating plant N uptake. In: Ma L, Ahuja LR, Bruulsema TW (eds) Quantifying and understanding plant nitrogen uptake systems modelling (9). CRC Press, Boca Raton, pp 197–218
Xu Lifeng, Henke Michael, Zhu Jun, Kurth Winfried, Buck-Sorlin Gerhard, A functional–structural model of rice linking quantitative genetic information with morphological development and physiological processes, 10.1093/aob/mcq264
Yang H. S., Janssen B. H., A mono-component model of carbon mineralization with a dynamic rate constant, 10.1046/j.1365-2389.2000.00319.x
Zhu Jinming, Lynch Jonathan P., The contribution of lateral rooting to phosphorus acquisition efficiency in maize (Zea mays) seedlings, 10.1071/fp04046
Zhu Jinming, Kaeppler Shawn M., Lynch Jonathan P., Topsoil foraging and phosphorus acquisition efficiency in maize (Zea mays), 10.1071/fp05005
Zhu J, Brown KM, Lynch JP (2010a) Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.). Plant Cell Environ 33:740–749
Zhu Jinming, Zhang Chaochun, Lynch Jonathan P., The utility of phenotypic plasticity of root hair length for phosphorus acquisition, 10.1071/fp09197
Zygalakis K. C., Roose T., A mathematical model for investigating the effect of cluster roots on plant nutrient uptake, 10.1140/epjst/e2012-01555-9
Zygalakis K. C., Kirk G. J. D., Jones D. L., Wissuwa M., Roose T., A dual porosity model of nutrient uptake by root hairs, 10.1111/j.1469-8137.2011.03840.x
Bibliographic reference
Dunbabin, Vanessa ; Postma, Johannes ; Schnepf, Andrea ; Pagès, Loïc ; Javaux, Mathieu ; et. al. Modelling root–soil interactions using three–dimensional models of root growth, architecture and function. In: Plant and Soil : international journal on plant-soil relationships, Vol. 372, p. 93-124 (4 June 2013)